Randomized interpolative decomposition (ID).
Randomized interpolative decomposition.
rid(A, k = NULL, mode = "column", p = 10, q = 0, idx_only = FALSE, rand = TRUE)
A |
array_like; |
k |
integer, optional; |
mode |
string c('column', 'row'), optional; |
p |
integer, optional; |
q |
integer, optional. |
idx_only |
bool, optional; |
rand |
bool, optional; |
Algorithm for computing the ID of a rectangular (m, n) matrix A, with target rank k << min(m,n). The input matrix is factored as
A = C * Z
using the column pivoted QR decomposition. The factor matrix C is formed as a subset of
columns of A, also called the partial column skeleton.
If mode='row'
, then the input matrix is factored as
A = Z * R
using the row pivoted QR decomposition. The factor matrix R is now formed as a subset of rows of A, also called the partial row skeleton. The factor matrix Z contains a (k, k) identity matrix as a submatrix, and is well-conditioned.
If rand='TRUE' a probabilistic strategy is used to compute the decomposition, otherwise a deterministic algorithm is used.
rid
returns a list containing the following components:
array_like;
column subset C = A[,idx], if mode='column'
; array with dimensions (m, k).
array_like;
row subset R = A[idx, ], if mode='row'
; array with dimensions (k, n).
array_like;
well conditioned matrix; Depending on the selected mode, this is an
array with dimensions (k,n) or (m,k).
array_like;
index set of the k selected columns or rows used to form C or R.
array_like;
information on the pivoting strategy used during the decomposition.
array_like;
scores of the columns or rows of the input matrix A.
array_like;
scores of the k selected columns or rows in C or R.
N. Benjamin Erichson, erichson@uw.edu
[1] N. Halko, P. Martinsson, and J. Tropp. "Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions" (2009). (available at arXiv https://arxiv.org/abs/0909.4061).
[2] N. B. Erichson, S. Voronin, S. L. Brunton and J. N. Kutz. 2019. Randomized Matrix Decompositions Using R. Journal of Statistical Software, 89(11), 1-48. doi: 10.18637/jss.v089.i11.
rcur
,
## Not run: # Load test image data("tiger") # Compute (column) randomized interpolative decompsition # Note that the image needs to be transposed for correct plotting out <- rid(t(tiger), k = 150) # Show selected columns tiger.partial <- matrix(0, 1200, 1600) tiger.partial[,out$idx] <- t(tiger)[,out$idx] image(t(tiger.partial), col = gray((0:255)/255), useRaster = TRUE) # Reconstruct image tiger.re <- t(out$C %*% out$Z) # Compute relative error print(norm(tiger-tiger.re, 'F') / norm(tiger, 'F')) # Plot approximated image image(tiger.re, col = gray((0:255)/255)) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.