Randomized robust principal component analysis (rrpca).
Robust principal components analysis separates a matrix into a low-rank plus sparse component.
rrpca( A, lambda = NULL, maxiter = 50, tol = 1e-05, p = 10, q = 2, trace = FALSE, rand = TRUE )
A |
array_like; |
lambda |
scalar, optional; |
maxiter |
integer, optional; |
tol |
scalar, optional; |
p |
integer, optional; |
q |
integer, optional; |
trace |
bool, optional; |
rand |
bool, optional; |
Robust principal component analysis (RPCA) is a method for the robust seperation of a a rectangular (m,n) matrix A into a low-rank component L and a sparse comonent S:
A = L + S
To decompose the matrix, we use the inexact augmented Lagrange multiplier method (IALM). The algorithm can be used in combination with either the randomized or deterministic SVD.
rrpca
returns a list containing the following components:
array_like;
low-rank component; (m, n) dimensional array.
array_like
sparse component; (m, n) dimensional array.
N. Benjamin Erichson, erichson@berkeley.edu
[1] N. B. Erichson, S. Voronin, S. L. Brunton and J. N. Kutz. 2019. Randomized Matrix Decompositions Using R. Journal of Statistical Software, 89(11), 1-48. doi: 10.18637/jss.v089.i11.
[2] Lin, Zhouchen, Minming Chen, and Yi Ma. "The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices." (2010). (available at arXiv https://arxiv.org/abs/1009.5055).
library('rsvd') # Create toy video # background frame xy <- seq(-50, 50, length.out=100) mgrid <- list( x=outer(xy*0,xy,FUN="+"), y=outer(xy,xy*0,FUN="+") ) bg <- 0.1*exp(sin(-mgrid$x**2-mgrid$y**2)) toyVideo <- matrix(rep(c(bg), 100), 100*100, 100) # add moving object for(i in 1:90) { mobject <- matrix(0, 100, 100) mobject[i:(10+i), 45:55] <- 0.2 toyVideo[,i] = toyVideo[,i] + c( mobject ) } # Foreground/Background separation out <- rrpca(toyVideo, trace=TRUE) # Display results of the seperation for the 10th frame par(mfrow=c(1,4)) image(matrix(bg, ncol=100, nrow=100)) #true background image(matrix(toyVideo[,10], ncol=100, nrow=100)) # frame image(matrix(out$L[,10], ncol=100, nrow=100)) # seperated background image(matrix(out$S[,10], ncol=100, nrow=100)) #seperated foreground
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.