Computes The Regression Of An Array On Another Along A Dimension
Computes the regression of the input matrice vary on the input matrice varx
along the posREG dimension by least square fitting. Provides the slope of
the regression, the associated confidence interval, and the intercept.
Provides also the vary data filtered out from the regression onto varx.
The confidence interval relies on a student-T distribution.
Regression(vary, varx, posREG = 2)
vary |
Array of any number of dimensions up to 10. |
varx |
Array of any number of dimensions up to 10. Same dimensions as vary. |
posREG |
Position along which to compute the regression. |
$regression |
Array with same dimensions as varx and vary except along posREG dimension which is replaced by a length 4 dimension, corresponding to the lower limit of the 95% confidence interval, the slope, the upper limit of the 95% confidence interval and the intercept. |
$filtered |
Same dimensions as vary filtered out from the regression onto varx along the posREG dimension. |
History:
0.1 - 2013-05 (V. Guemas, virginie.guemas@ic3.cat) - Original code
1.0 - 2013-09 (N. Manubens, nicolau.manubens@ic3.cat) - Formatting to CRAN
# See examples on Load() to understand the first lines in this example ## Not run: data_path <- system.file('sample_data', package = 's2dverification') expA <- list(name = 'experiment', path = file.path(data_path, 'model/$EXP_NAME$/$STORE_FREQ$_mean/$VAR_NAME$_3hourly', '$VAR_NAME$_$START_DATE$.nc')) obsX <- list(name = 'observation', path = file.path(data_path, '$OBS_NAME$/$STORE_FREQ$_mean/$VAR_NAME$', '$VAR_NAME$_$YEAR$$MONTH$.nc')) # Now we are ready to use Load(). startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101') sampleData <- Load('tos', list(expA), list(obsX), startDates, output = 'lonlat', latmin = 27, latmax = 48, lonmin = -12, lonmax = 40) ## End(Not run) sampleData$mod <- Season(sampleData$mod, 4, 11, 12, 2) sampleData$obs <- Season(sampleData$obs, 4, 11, 12, 2) reg <- Regression(Mean1Dim(sampleData$mod, 2), Mean1Dim(sampleData$obs, 2), 2) PlotEquiMap(reg$regression[1, 2, 1, , ], sampleData$lon, sampleData$lat, toptitle='Regression of the prediction on the observations', sizetit = 0.5)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.