Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

varest

Variance estimation using the Deville's method


Description

Computes the variance estimation of an estimator of the population total using the Deville's method.

Usage

varest(Ys,Xs=NULL,pik,w=NULL)

Arguments

Ys

vector of the variable of interest; its length is equal to n, the sample size.

Xs

matrix of the auxiliary variables; for the calibration estimator, this is the matrix of the sample calibration variables.

pik

vector of the first-order inclusion probabilities; its length is equal to n, the sample size.

w

vector of the calibrated weights (for the calibration estimator); its length is equal to n, the sample size.

Details

The function implements the following estimator:

\widehat{Var}(\widehat{Ys})=\frac{1}{1-∑_{k\in s} a_k^2}∑_{k\in s}(1-π_k)≤ft(\frac{y_k}{π_k}-\frac{∑_{l\in s} (1-π_{l})y_l/π_l}{∑_{l\in s} (1-π_l)}\right)

where a_k=(1-π_k)/∑_{l\in s} (1-π_l).

References

Deville, J.-C. (1993). Estimation de la variance pour les enquêtes en deux phases. Manuscript, INSEE, Paris.

See Also

Examples

# Belgian municipalities data base
data(belgianmunicipalities)
attach(belgianmunicipalities)
# Computes the inclusion probabilities
pik=inclusionprobabilities(Tot04,200)
N=length(pik)
n=sum(pik)
# Defines the variable of interest
y=TaxableIncome
# Draws a Tille sample of size 200
s=UPtille(pik)
# Computes the Horvitz-Thompson estimator
HTestimator(y[s==1],pik[s==1])
# Computes the variance estimation of the Horvitz-Thompson estimator
varest(Ys=y[s==1],pik=pik[s==1])
# for an example using calibration estimator see the 'calibration' vignette 
# vignette("calibration", package="sampling")

sampling

Survey Sampling

v2.9
GPL (>= 2)
Authors
Yves Till<e9> <yves.tille@unine.ch>, Alina Matei <alina.matei@unine.ch>
Initial release
2021-01-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.