Score Transformation
scorecard_ply
calculates credit score using the results from scorecard
.
scorecard_ply(dt, card, only_total_score = TRUE, print_step = 0L, replace_blank_na = TRUE, var_kp = NULL)
dt |
A data frame, which is the original dataset for training model. |
card |
The scorecard generated from the function |
only_total_score |
Logical, Defaults to TRUE. If it is TRUE, then the output includes only total credit score; Otherwise, if it is FALSE, the output includes both total and each variable's credit score. |
print_step |
A non-negative integer. Defaults to 1. If print_step>0, print variable names by each print_step-th iteration. If print_step=0, no message is print. |
replace_blank_na |
Logical. Replace blank values with NA. Defaults to TRUE. This argument should be the same with |
var_kp |
Name of force kept variables, such as id column. Defaults to NULL. |
A data frame in score values
# load germancredit data data("germancredit") # filter variable via missing rate, iv, identical value rate dt_sel = var_filter(germancredit, "creditability") # woe binning ------ bins = woebin(dt_sel, "creditability") dt_woe = woebin_ply(dt_sel, bins) # glm ------ m = glm(creditability ~ ., family = binomial(), data = dt_woe) # Select a formula-based model by AIC m_step = step(m, direction="both", trace=FALSE) m = eval(m_step$call) # scorecard # Example I # creat a scorecard card = scorecard(bins, m) card2 = scorecard2(bins=bins, dt=germancredit, y='creditability', x=sub('_woe', '', names(coef(m))[-1])) # credit score # Example I # only total score score1 = scorecard_ply(germancredit, card) # Example II # credit score for both total and each variable score2 = scorecard_ply(germancredit, card, only_total_score = FALSE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.