Scorecard Modeling Report
report
creates a scorecard modeling report and save it as a xlsx file.
report(dt, y, x, breaks_list, special_values = NULL, seed = 618, save_report = "report", positive = "bad|1", ...)
dt |
A data frame or a list of data frames that have both x (predictor/feature) and y (response/label) variables. If there are multiple data frames are provided, only the first data frame would be used for training, and the others would be used for testing/validation. |
y |
Name of y variable. |
x |
Name of x variables. Defaults to NULL. If x is NULL, then all columns except y are counted as x variables. |
breaks_list |
A list of break points. It can be extracted from |
special_values |
The values specified in special_values will be in separate bins. Defaults to NULL. |
seed |
A random seed to split input data frame. Defaults to 618. If it is NULL, input dt will not split into two datasets. |
save_report |
The name of xlsx file where the report is to be saved. Defaults to 'report'. |
positive |
Value of positive class, default "bad|1". |
... |
Additional parameters. |
## Not run: data("germancredit") y = 'creditability' x = c( "status.of.existing.checking.account", "duration.in.month", "credit.history", "purpose", "credit.amount", "savings.account.and.bonds", "present.employment.since", "installment.rate.in.percentage.of.disposable.income", "personal.status.and.sex", "property", "age.in.years", "other.installment.plans", "housing" ) special_values=NULL breaks_list=list( status.of.existing.checking.account=c("... < 0 DM%,%0 <= ... < 200 DM", "... >= 200 DM / salary assignments for at least 1 year", "no checking account"), duration.in.month=c(8, 16, 34, 44), credit.history=c( "no credits taken/ all credits paid back duly%,%all credits at this bank paid back duly", "existing credits paid back duly till now", "delay in paying off in the past", "critical account/ other credits existing (not at this bank)"), purpose=c("retraining%,%car (used)", "radio/television", "furniture/equipment%,%domestic appliances%,%business%,%repairs", "car (new)%,%others%,%education"), credit.amount=c(1400, 1800, 4000, 9200), savings.account.and.bonds=c("... < 100 DM", "100 <= ... < 500 DM", "500 <= ... < 1000 DM%,%... >= 1000 DM%,%unknown/ no savings account"), present.employment.since=c("unemployed%,%... < 1 year", "1 <= ... < 4 years", "4 <= ... < 7 years", "... >= 7 years"), installment.rate.in.percentage.of.disposable.income=c(2, 3), personal.status.and.sex=c("male : divorced/separated", "female : divorced/separated/married", "male : single", "male : married/widowed"), property=c("real estate", "building society savings agreement/ life insurance", "car or other, not in attribute Savings account/bonds", "unknown / no property"), age.in.years=c(26, 28, 35, 37), other.installment.plans=c("bank%,%stores", "none"), housing=c("rent", "own", "for free") ) # Example I # input dt is a data frame # split input data frame into two report(germancredit, y, x, breaks_list, special_values, seed=618, save_report='report1', show_plot = c('ks', 'lift', 'gain', 'roc', 'lz', 'pr', 'f1', 'density')) # donot split input data report(germancredit, y, x, breaks_list, special_values, seed=NULL, save_report='report2') # Example II # input dt is a list # only one dataset report(list(dt=germancredit), y, x, breaks_list, special_values, seed=NULL, save_report='report3') # multiple datasets report(list(dt1=germancredit[sample(1000,500)], dt2=germancredit[sample(1000,500)]), y, x, breaks_list, special_values, seed=NULL, save_report='report4') # multiple datasets report(list(dt1=germancredit[sample(1000,500)], dt2=germancredit[sample(1000,500)], dt3=germancredit[sample(1000,500)]), y, x, breaks_list, special_values, seed=NULL, save_report='report5') ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.