WOE Binning Adjustment
woebin_adj
interactively adjust the binning breaks.
woebin_adj(dt, y, bins, adj_all_var = TRUE, special_values = NULL, method = "tree", save_breaks_list = NULL, count_distr_limit = 0.05, to = "breaks_list", ...)
dt |
A data frame. |
y |
Name of y variable. |
bins |
A list of data frames. Binning information generated from |
adj_all_var |
Logical, whether to show variables have monotonic woe trends. Defaults to TRUE |
special_values |
The values specified in special_values will in separate bins. Defaults to NULL. |
method |
Optimal binning method, it should be "tree" or "chimerge". Defaults to "tree". |
save_breaks_list |
A string. The file name to save breaks_list. Defaults to None. |
count_distr_limit |
The minimum count distribution percentage. Accepted range: 0.01-0.2; Defaults to 0.05. This argument should be the same with woebin's. |
to |
Adjusting bins into breaks_list or bins_list. Defaults to breaks_list. |
... |
Additional parameters. |
A list of modified break points of each x variables.
## Not run: # Load German credit data data(germancredit) # Example I dt = germancredit[, c("creditability", "age.in.years", "credit.amount")] bins = woebin(dt, y="creditability") breaks_adj = woebin_adj(dt, y="creditability", bins) bins_final = woebin(dt, y="creditability", breaks_list=breaks_adj) # Example II binsII = woebin(germancredit, y="creditability") breaks_adjII = woebin_adj(germancredit, "creditability", binsII) bins_finalII = woebin(germancredit, y="creditability", breaks_list=breaks_adjII) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.