Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

akamatsu

Water tank minimum resonant and cutoff frequencies


Description

This function computes the resonant and cutoff frequencies when recording in a given aquarium according to the criteria explained in Akamatsu et al. (2002)

Usage

akamatsu(Lx, Ly, Lz, mode = c(1,1,1),
         c = 148000,  plot = FALSE, xlab = "Frequency (kHz)",
         ylab = "Attenuation distance (cm)", ...)

Arguments

Lx

watertank length (in cm).

Ly

watertank width (in cm).

Lz

watertank height (in cm).

mode

mode, see details.

c

sound velocity in cm/s (by default 148000 cm/s in water).

plot

logical, if TRUE plots the attenuation distance in function of frequency.

xlab

title of the x axis if plot is TRUE.

ylab

title of the y axis if plot is TRUE.

...

other plot graphical parameters.

Details

From Akamatsu et al. (2002):

1. Resonant frequency

The calculated resonant frequencies of a rectangular glass tank with the dimension of Lx , Ly , and Lz (in centimeters) can be described by the following equation:

f = 0.5*c*sqrt((l/Lx)^2 + (m/Ly)^2 + (n/Lz)^2)

where c is the sound velocity (cm/s) and each l, m, n reprents an integer, and the combination of these paramameters designates the 'mode number'. The mode (1, 1, 1) represents the resonance wave of minimum frequency. The mode (2, 1, 1) represents one of the higher order of resonant component and has additional node of the soundpressure level at the middle of the X axis, i.e., Lx/2.


2. Cutoff frequency

The cutoff frequency can be calculated as follows:

f = 0.5*c*sqrt((1/Ly)^2 + (1/Lz)^2)



3. Attenuation distance

The theoretical attenuation distance D can be expressed in function of the cutoff frequency and the projected frequency following:

f = (2*log(10)*c)/(4*pi*Fcut*sqrt(1-(f/Fcut)^2))

Value

A list of two items:

res

Resonant frequency (in Hz). See Details

cut

Cut frequency (in Hz). See Details

Author(s)

Camille Desjonqueres

References

Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Emprical refinements applicable to the recording of fish sounds in small tanks. Journal of the Acoustical Society of America, 112, 3073-3082.

Examples

akamatsu(60, 30, 40)

seewave

Sound Analysis and Synthesis

v2.1.6
GPL (>= 2)
Authors
Jerome Sueur <sueur@mnhn.fr> [cre, au], Thierry Aubin [au], Caroline Simonis [au], Laurent Lellouch [main ctrb], Ethan C. Brown [ctrb], Marion Depraetere [ctrb], Camille Desjonqueres [ctrb], Francois Fabianek [ctrb], Amandine Gasc [ctrb], Eric Kasten [ctrb], Stefanie LaZerte [ctrb], Jonathan Lees [ctrb], Jean Marchal [ctrb], Andre Mikulec [ctrb], Sandrine Pavoine [ctrb], David Pinaud [ctrb], Alicia Stotz [ctrb], Luis J. Villanueva-Rivera [ctrb], Zev Ross [ctrb], Carl G. Witthoft [ctrb], Hristo Zhivomirov [ctrb].
Initial release
2020-06-28

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.