Methods for sem Objects Fit Using the objectiveML, objectiveGLS, objectiveFIML, msemObjectiveML, and msemObjectiveGLS Objective Functions
These functions are for objects fit by sem
using the objectiveML
(multivariate-normal full-information maximum-likelihood), link{objectiveFIML}
(multivariate-normal full-information maximum-likihood in
the presence of missing data),
objectiveGLS
(generalized least squares), and msemObjectiveML
(multigroup multivariate-normal FIML) objective functions.
## S3 method for class 'objectiveML' anova(object, model.2, robust=FALSE, ...) ## S3 method for class 'objectiveFIML' anova(object, model.2, ...) ## S3 method for class 'objectiveML' logLik(object, ...) ## S3 method for class 'objectiveFIML' logLik(object, saturated=FALSE, intercept="Intercept", iterlim=1000, ...) ## S3 method for class 'objectiveML' deviance(object, ...) ## S3 method for class 'objectiveFIML' deviance(object, saturated.logLik, ...) ## S3 method for class 'msemObjectiveML' deviance(object, ...) ## S3 method for class 'objectiveML' AIC(object, ..., k) ## S3 method for class 'objectiveFIML' AIC(object, saturated.logLik, ..., k) ## S3 method for class 'msemObjectiveML' AIC(object, ..., k) ## S3 method for class 'objectiveML' AICc(object, ...) ## S3 method for class 'objectiveFIML' AICc(object, saturated.logLik, ...) ## S3 method for class 'msemObjectiveML' AICc(object, ...) ## S3 method for class 'objectiveML' BIC(object, ...) ## S3 method for class 'objectiveFIML' BIC(object, saturated.logLik, ...) ## S3 method for class 'msemObjectiveML' BIC(object, ...) ## S3 method for class 'objectiveML' CAIC(object, ...) ## S3 method for class 'objectiveFIML' CAIC(object, saturated.logLik, ...) ## S3 method for class 'objectiveML' print(x, ...) ## S3 method for class 'objectiveGLS' print(x, ...) ## S3 method for class 'objectiveFIML' print(x, saturated=FALSE, ...) ## S3 method for class 'msemObjectiveML' print(x, ...) ## S3 method for class 'msemObjectiveGLS' print(x, ...) ## S3 method for class 'objectiveML' summary(object, digits=getOption("digits"), conf.level=.90, robust=FALSE, analytic.se=object$t <= 500, fit.indices=c("GFI", "AGFI", "RMSEA", "NFI", "NNFI", "CFI", "RNI", "IFI", "SRMR", "AIC", "AICc", "BIC", "CAIC"), ...) ## S3 method for class 'objectiveFIML' summary(object, digits=getOption("digits"), conf.level=.90, fit.indices=c("AIC", "AICc", "BIC", "CAIC"), saturated=FALSE, intercept="Intercept", saturated.logLik, ...) ## S3 method for class 'objectiveGLS' summary(object, digits=getOption("digits"), conf.level=.90, fit.indices=c("GFI", "AGFI", "RMSEA", "NFI", "NNFI", "CFI", "RNI", "IFI", "SRMR"), ...) ## S3 method for class 'msemObjectiveML' summary(object, digits=getOption("digits"), conf.level=.90, robust=FALSE, analytic.se=object$t <= 500, fit.indices=c("GFI", "AGFI", "RMSEA", "NFI", "NNFI", "CFI", "RNI", "IFI", "SRMR", "AIC", "AICc", "BIC"), ...) ## S3 method for class 'msemObjectiveGLS' summary(object, digits=getOption("digits"), conf.level=.90, fit.indices=c("GFI", "AGFI", "RMSEA", "NFI", "NNFI", "CFI", "RNI", "IFI", "SRMR"), ...)
object, model.2, x |
an object inheriting from class |
robust |
if |
fit.indices |
a character vector of “fit indices” to report; the allowable values are those given in Usage
above, and vary by the objective function. If the argument isn't given then the fit indices reported are taken
from the R |
k, ... |
ignored. |
digits |
digits to be printed. |
conf.level |
level for confidence interval for the RMSEA index (default is .9). |
analytic.se |
use analytic (as opposed to numeric) coefficient standard errors; default is |
saturated |
if |
intercept |
the name of the intercept regressor in the raw data, to be used in calculating the
saturated log-likelihood for the FIML estimator; the default is |
saturated.logLik |
the log-likelihood for the saturated model, as returned by |
iterlim |
iteration limit used by the |
John Fox jfox@mcmaster.ca and Jarrett Byrnes
See sem
.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.