Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

posterior_predictive

Plot the posterior predictive distribution for a simmr run


Description

This function takes the output from simmr_mcmc and plots the posterior predictive distribution to enable visualisation of model fit. The simulated posterior predicted values are returned as part of the object and can be saved for external use

Usage

posterior_predictive(simmr_out, group = 1, prob = 0.5, plot_ppc = TRUE)

Arguments

simmr_out

A run of the simmr model from simmr_mcmc

group

Which group to run it for (currently only numeric rather than group names)

prob

The probability interval for the posterior predictives. The default is 0.5 (i.e. 50pc intervals)

plot_ppc

Whether to create a bayesplot of the posterior predictive or not.

Examples

## Not run: 
data(geese_data_day1)
simmr_1 <- with(
  geese_data_day1,
  simmr_load(
    mixtures = mixtures,
    source_names = source_names,
    source_means = source_means,
    source_sds = source_sds,
    correction_means = correction_means,
    correction_sds = correction_sds,
    concentration_means = concentration_means
  )
)

# Plot
plot(simmr_1)

# Print
simmr_1

# MCMC run
simmr_1_out <- simmr_mcmc(simmr_1)

# Prior predictive
post_pred <- posterior_predictive(simmr_1_out)

## End(Not run)

simmr

A Stable Isotope Mixing Model

v0.4.5
GPL (>= 2)
Authors
Andrew Parnell
Initial release
2021-02-28

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.