Set the data generation population model underlying an object
This function will set the data generation population model to be an appropriate one. If the appropriate data generation model is specified, the additional features can be seen in summary
or summaryParam
functions on the target object, such as bias in parameter estimates or percentage coverage.
setPopulation(target, population)
target |
The result object that you wish to set the data generation population model ( |
population |
The population parameters specified in the |
The target object that is changed the parameter.
Sunthud Pornprasertmanit (psunthud@gmail.com)
SimResult
for result object
# See each class for an example. ## Not run: # Data generation model loading <- matrix(0, 7, 3) loading[1:3, 1] <- NA loading[4:6, 2] <- NA loading[1:7, 3] <- NA loadingVal <- matrix(0, 7, 3) loadingVal[1:3, 1] <- "runif(1, 0.5, 0.7)" loadingVal[4:6, 2] <- "runif(1, 0.5, 0.7)" loadingVal[1:6, 3] <- "runif(1, 0.3, 0.5)" loadingVal[7, 3] <- 1 loading.mis <- matrix("runif(1, -0.2, 0.2)", 7, 3) loading.mis[is.na(loading)] <- 0 loading.mis[,3] <- 0 loading.mis[7,] <- 0 LY <- bind(loading, loadingVal, misspec=loading.mis) RPS <- binds(diag(3)) path <- matrix(0, 3, 3) path[2, 1] <- NA BE <- bind(path, "runif(1, 0.3, 0.5)") RTE <- binds(diag(7)) VY <- bind(c(rep(NA, 6), 0), c(rep(1, 6), "")) datamodel <- model(LY=LY, RPS=RPS, BE=BE, RTE=RTE, VY=VY, modelType="SEM") # Data analysis model loading <- matrix(0, 7, 3) loading[1:3, 1] <- NA loading[4:6, 2] <- NA loading[7, 3] <- NA path <- matrix(0, 3, 3) path[2, 1] <- NA path[1, 3] <- NA path[2, 3] <- NA errorCov <- diag(NA, 7) errorCov[7, 7] <- 0 facCov <- diag(3) analysis <- estmodel(LY=loading, BE=path, TE=errorCov, PS=facCov, modelType="SEM", indLab=paste("y", 1:7, sep="")) # In reality, more than 10 replications are needed. Output <- sim(10, n=200, analysis, generate=datamodel) # Population loadingVal <- matrix(0, 7, 3) loadingVal[1:3, 1] <- 0.6 loadingVal[4:6, 2] <- 0.6 loadingVal[7, 3] <- 1 LY <- bind(loading, loadingVal) pathVal <- matrix(0, 3, 3) pathVal[2, 1] <- 0.4 pathVal[1, 3] <- 0.4 pathVal[2, 3] <- 0.4 BE <- bind(path, pathVal) PS <- binds(facCov) errorCovVal <- diag(0.64, 7) errorCovVal[7, 7] <- 0 TE <- binds(errorCov, errorCovVal) population <- model(LY=LY, PS=PS, BE=BE, TE=TE, modelType="SEM") # Set up the new population Output2 <- setPopulation(Output, population) # This summary will contain the bias information summary(Output2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.