Grade of Membership Model (Joint Maximum Likelihood Estimation)
This function estimates the grade of membership model employing a joint maximum likelihood estimation method (Erosheva, 2002; p. 23ff.).
gom.jml(dat, K=2, seed=NULL, globconv=0.001, maxdevchange=0.001,
        maxiter=600, min.lambda=0.001, min.g=0.001)| dat | Data frame of dichotomous item responses | 
| K | Number of classes | 
| seed | Seed value of random number generator. Deterministic starting values
are used for the default value  | 
| globconv | Global parameter convergence criterion | 
| maxdevchange | Maximum change in relative deviance | 
| maxiter | Maximum number of iterations | 
| min.lambda | Minimum λ_{ik} parameter to be estimated | 
| min.g | Minimum g_{pk} parameter to be estimated | 
The item response model of the grade of membership model with K classes for dichotomous correct responses X_{pi} of person p on item i is
P(X_{pi}=1 | g_{p1}, …, g_{pK} )=∑_k λ_{ik} g_{pk} , ∑_k g_{pk}=1
A list with following entries:
| lambda | Data frame of item parameters λ_{ik} | 
| g | Data frame of individual membership scores g_{pk} | 
| g.mean | Mean membership scores | 
| gcut | Discretized membership scores | 
| gcut.distr | Distribution of discretized membership scores | 
| K | Number of classes | 
| deviance | Deviance | 
| ic | Information criteria | 
| N | Number of students | 
| score | Person score | 
| iter | Number of iterations | 
| datproc | List with processed data (recoded data, starting values, ...) | 
| ... | Further values | 
Erosheva, E. A. (2002). Grade of membership and latent structure models with application to disability survey data. PhD thesis, Carnegie Mellon University, Department of Statistics.
S3 method summary.gom
#############################################################################
# EXAMPLE 1: TIMSS data
#############################################################################
data( data.timss)
dat <- data.timss$data[, grep("M", colnames(data.timss$data) ) ]
# 2 Classes (deterministic starting values)
m2 <- sirt::gom.jml(dat,K=2, maxiter=10 )
summary(m2)
## Not run: 
# 3 Classes with fixed seed and maximum number of iterations
m3 <- sirt::gom.jml(dat,K=3, maxiter=50,seed=89)
summary(m3)
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.