Person Parameter Estimation of the Rasch Copula Model (Braeken, 2011)
Ability estimates as maximum likelihood estimates (MLE) are provided by the Rasch copula model.
person.parameter.rasch.copula(raschcopula.object, numdiff.parm=0.001,
    conv.parm=0.001, maxiter=20, stepwidth=1,
    print.summary=TRUE, ...)| raschcopula.object | Object which is generated by the coderasch.copula2 function. | 
| numdiff.parm | Parameter h for numerical differentiation | 
| conv.parm | Convergence criterion | 
| maxiter | Maximum number of iterations | 
| stepwidth | Maximal increment in iterations | 
| print.summary | Print summary? | 
| ... | Further arguments to be passed | 
A list with following entries
| person | Estimated person parameters | 
| se.inflat | Inflation of individual standard errors due to local dependence | 
| theta.table | Ability estimates for each unique response pattern | 
| pattern.in.data | Item response pattern | 
| summary.theta.table | Summary statistics of person parameter estimates | 
See rasch.copula2 for estimating Rasch copula models.
#############################################################################
# EXAMPLE 1: Reading Data
#############################################################################
data(data.read)
dat <- data.read
# define item cluster
itemcluster <- rep( 1:3, each=4 )
mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster )
summary(mod1)
# person parameter estimation under the Rasch copula model
pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 )
## Mean percentage standard error inflation
##   missing.pattern Mperc.seinflat
## 1               1           6.35
## Not run: 
#############################################################################
# EXAMPLE 2: 12 items nested within 3 item clusters (testlets)
#   Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9;  Cluster 3 -> Items 10-12
#############################################################################
set.seed(967)
I <- 12                             # number of items
n <- 450                            # number of persons
b <- seq(-2,2, len=I)               # item difficulties
b <- sample(b)                      # sample item difficulties
theta <- stats::rnorm( n, sd=1 ) # person abilities
# itemcluster
itemcluster <- rep(0,I)
itemcluster[ 1:4 ] <- 1
itemcluster[ 6:9 ] <- 2
itemcluster[ 10:12 ] <- 3
# residual correlations
rho <- c( .35, .25, .30 )
# simulate data
dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho )
colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="")
# estimate Rasch copula model
mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster )
summary(mod1)
# person parameter estimation under the Rasch copula model
pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 )
  ## Mean percentage standard error inflation
  ##   missing.pattern Mperc.seinflat
  ## 1               1          10.48
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.