DTLZ3 Function (family)
Builds and returns the multi-objective DTLZ3 test problem. The formula is very similar to the formula of DTLZ2, but it uses the g function of DTLZ1, which introduces a lot of local Pareto-optimal fronts. Thus, this problems is well suited to check the ability of an optimizer to converge to the global Pareto-optimal front.
The DTLZ3 test problem is defined as follows:
Minimize f[1](X) = (1 + g(XM)) * cos(x[1] * pi/2) * cos(x[2] * pi/2) * ... * cos(x[M-2] * pi/2) * cos(x[M-1] * pi/2)
Minimize f[2](X) = (1 + g(XM)) * cos(x[1] * pi/2) * cos(x[2] * pi/2) * ... * cos(x[M-2] * pi/2) * sin(x[M-1] * pi/2)
Minimize f[3](X) = (1 + g(XM)) * cos(x[1] * pi/2) * cos(x[2] * pi/2) * ... * sin(x[M-2] * pi/2)
...
Minimize f[M-1](X) = (1 + g(XM)) * cos(x[1] * pi/2) * sin(x[2] * pi/2)
Minimize f[M](X) = (1 + g(XM)) * sin(x[1] * pi/2)
with 0 <= x[i] <= 1, for i=1,2,...,n
where g(XM) = 100 * (|XM| + sum{x[i] in XM} {(x[i] - 0.5)^2 - cos(20 * pi * (x[i] - 0.5))})
makeDTLZ3Function(dimensions, n.objectives)
dimensions |
[ |
n.objectives |
[ |
[smoof_multi_objective_function
]
K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.