DTLZ4 Function (family)
Builds and returns the multi-objective DTLZ4 test problem. It is a slight modification of the DTLZ2 problems by introducing the parameter α. The parameter is used to map \mathbf{x}_i \rightarrow \mathbf{x}_i^{α}.
The DTLZ4 test problem is defined as follows:
Minimize f[1](X) = (1 + g(XM)) * cos(x[1]^alpha * pi/2) * cos(x[2]^alpha * pi/2) * ... * cos(x[M-2]^alpha * pi/2) * cos(x[M-1]^alpha * pi/2)
Minimize f[2](X) = (1 + g(XM)) * cos(x[1]^alpha * pi/2) * cos(x[2]^alpha * pi/2) * ... * cos(x[M-2]^alpha * pi/2) * sin(x[M-1]^alpha * pi/2)
Minimize f[3](X) = (1 + g(XM)) * cos(x[1]^alpha * pi/2) * cos(x[2]^alpha * pi/2) * ... * sin(x[M-2]^alpha * pi/2)
...
Minimize f[M-1](X) = (1 + g(XM)) * cos(x[1]^alpha * pi/2) * sin(x[2]^alpha * pi/2)
Minimize f[M](X) = (1 + g(XM)) * sin(x[1]^alpha * pi/2)
with 0 <= x[i] <= 1, for i=1,2,...,n
where g(XM) = sum{x[i] in XM} {(x[i] - 0.5)^2}
makeDTLZ4Function(dimensions, n.objectives, alpha = 100)
dimensions |
[ |
n.objectives |
[ |
alpha |
[ |
[smoof_multi_objective_function
]
K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.