ZDT3 Function
Builds and returns the two-objective ZDT3 test problem. For m objective it is defined as follows
f(\mathbf{x}) = ≤ft(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right)
with
f_1(\mathbf{x}_1) = \mathbf{x}_1, f_2(\mathbf{x}) = g(\mathbf{x}) h(f_1(\mathbf{x}_1), g(\mathbf{x}))
where
g(\mathbf{x}) = 1 + \frac{9}{m - 1} ∑_{i = 2}^m \mathbf{x}_i, h(f_1, g) = 1 - √{\frac{f_1(\mathbf{x})}{g(\mathbf{x})}} - ≤ft(\frac{f_1(\mathbf{x})}{g(\mathbf{x})}\right)\sin(10π f_1(\mathbf{x}))
and \mathbf{x}_i \in [0,1], i = 1, …, m. This function has some discontinuities in the Pareto-optimal front introduced by the sine term in the h function (see above). The front consists of multiple convex parts.
makeZDT3Function(dimensions)
dimensions |
[ |
[smoof_multi_objective_function
]
E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173-195, 2000
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.