Multivariate skew-t distribution and skew-Cauchy distribution
Probability density function, distribution function and random number generation for the multivariate skew-t (ST) and skew-Cauchy (SC) distributions.
dmst(x, xi=rep(0,length(alpha)), Omega, alpha, nu=Inf, dp=NULL, log=FALSE) pmst(x, xi=rep(0,length(alpha)), Omega, alpha, nu=Inf, dp=NULL, ...) rmst(n=1, xi=rep(0,length(alpha)), Omega, alpha, nu=Inf, dp=NULL) dmsc(x, xi=rep(0,length(alpha)), Omega, alpha, dp=NULL, log=FALSE) pmsc(x, xi=rep(0,length(alpha)), Omega, alpha, dp=NULL, ...) rmsc(n=1, xi=rep(0,length(alpha)), Omega, alpha, dp=NULL)
x |
for |
xi |
a numeric vector of length |
Omega |
a symmetric positive-definite matrix of dimension |
alpha |
a numeric vector of length |
nu |
a positive value representing the degrees of freedom of
ST distribution; does not need to be integer.
Default value is |
dp |
a list with three elements named |
n |
a numeric value which represents the number of random vectors to be
drawn; default value is |
log |
logical (default value: |
... |
additional parameters passed to |
Typical usages are
dmst(x, xi=rep(0,length(alpha)), Omega, alpha, nu=Inf, log=FALSE) dmst(x, dp=, log=FALSE) pmst(x, xi=rep(0,length(alpha)), Omega, alpha, nu=Inf, ...) pmst(x, dp=, ...) rmst(n=1, xi=rep(0,length(alpha)), Omega, alpha, nu=Inf) rmst(n=1, dp=) dmsc(x, xi=rep(0,length(alpha)), Omega, alpha, log=FALSE) dmsc(x, dp=, log=FALSE) pmsc(x, xi=rep(0,length(alpha)), Omega, alpha, ...) pmsc(x, dp=, ...) rmsc(n=1, xi=rep(0,length(alpha)), Omega, alpha) rmsc(n=1, dp=)
Function pmst
requires dmt
from package
mnormt; the accuracy of its computation can be controlled via
argument ...
.
A vector of density values (dmst
and dmsc
) or a single
probability (pmst
and pmsc
) or a matrix of random points
(rmst
and rmsc
).
The family of multivariate ST distributions is an extension of the
multivariate Student's t family, via the introduction of a alpha
parameter which regulates asymmetry; when alpha=0
, the skew-t
distribution reduces to the commonly used form of multivariate Student's
t. Further, location is regulated by xi
and scale by
Omega
, when its diagonal terms are not all 1's.
When nu=Inf
the distribution reduces to the multivariate skew-normal
one; see dmsn
. Notice that the location vector xi
does not represent the mean vector of the distribution (which in fact
may not even exist if nu <= 1
), and similarly Omega
is not
the covariance matrix of the distribution, although it is a
covariance matrix.
For additional information, see Section 6.2 of the reference below.
The family of multivariate SC distributions is the subset of the
ST family, obtained when nu=1
. While in the univariate case
there are specialized functions for the SC distribution,
dmsc
, pmsc
and rmsc
simply make a call to dmst,
pmst, rmst
with argument nu
set equal to 1.
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monograph series.
dst
, dsc
, dmsn
,
dmt
, makeSECdistr
x <- seq(-4,4,length=15) xi <- c(0.5, -1) Omega <- diag(2) Omega[2,1] <- Omega[1,2] <- 0.5 alpha <- c(2,2) pdf <- dmst(cbind(x,2*x-1), xi, Omega, alpha, 5) rnd <- rmst(10, xi, Omega, alpha, 6) p1 <- pmst(c(2,1), xi, Omega, alpha, nu=5) p2 <- pmst(c(2,1), xi, Omega, alpha, nu=5, abseps=1e-12, maxpts=10000)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.