Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

particle.sedimentation

Sedimentation time of soil particles in aqueous media


Description

It calculates the sedimentation time of soil particle in aqueous media using Stokes equation, i.e., the time needed for the particles of soil larger than the size attributed as input to sediment in aqueous media, usually water.

Usage

particle.sedimentation(d, h=0.2, g=9.81, v=0.001, Pd=2650, Wd=1000)

Arguments

d

the lower limit of soil particle diameter (micrometers) to sediment withing the calculated time.

h

the vertical distance (meters) from which the particles fall. Default is 0.2 m.

g

the acceleration of gravity, in m/s^2. Default is 9.81 m/s^2.

v

the viscosity of the fluid, in N/s/m^2. Default is 0.001 N/s/m^2, for water at 20 degrees Celsius.

Pd

the particle density, in kg/m^3. Default is 2650 kg/m^3.

Wd

the density of the fluid, in kg/m^3. Default is 1000 kg/m^3.

Value

A data.frame containing the estimated time for the sedimentation of particles.

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

References

Hillel, D. (2003). Introduction to environmental soil physics. Elsevier. p.39-51. Doi:10.1016/B978-012348655-4/50004-6

Examples

# Example 1
particle.sedimentation(d=2, h=0.2, g=9.81, v=1.002*10^-3, Pd=2650, Wd=1000) 

# Example 2
d <- c(2000, 200, 50, 10, 2, 1)
time <- particle.sedimentation(d=d, h=0.2, g=9.81, v=1.002*10^-3, Pd=2650, Wd=1000) 

plot(x=d, y=time$hours, log = "x", xaxt ="n", 
     ylab = "time of sedimentation (hours)", xlab = "particle diameter (micrometer)")
axis(1,at=d, labels=d)

# End (not run)

soilphysics

Soil Physical Analysis

v4.0
GPL (>= 2)
Authors
Anderson Rodrigo da Silva [aut, cre] (<https://orcid.org/0000-0003-2518-542X>), Renato Paiva de Lima [aut] (<https://orcid.org/0000-0003-0524-439X>)
Initial release
2020-12-06

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.