Broad sense heritability calculation.
This dataset contains phenotpic data for 41 potato lines evaluated in 3 environments in an RCBD design. The phenotypic trait is tuber quality and we show how to obtain an estimate of DT_example for the trait.
data("DT_example")
The format is: chr "DT_example"
This data was generated by a potato study.
Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
The core functions of the package mmer
####=========================================#### #### For CRAN time limitations most lines in the #### examples are silenced with one '#' mark, #### remove them and run the examples ####=========================================#### ####=========================================#### #### EXAMPLES #### Different models with sommer ####=========================================#### data(DT_example) DT <- DT_example A <- A_example head(DT) ####=========================================#### #### Univariate homogeneous variance models #### ####=========================================#### ## Compound simmetry (CS) model ans1 <- mmer(Yield~Env, random= ~ Name + Env:Name, rcov= ~ units, data=DT) summary(ans1) ####===========================================#### #### Univariate heterogeneous variance models #### ####===========================================#### ## Compound simmetry (CS) + Diagonal (DIAG) model ans2 <- mmer(Yield~Env, random= ~Name + vs(ds(Env),Name), rcov= ~ vs(ds(Env),units), data=DT) summary(ans2) ####===========================================#### #### Univariate unstructured variance models #### ####===========================================#### ans3 <- mmer(Yield~Env, random=~ vs(us(Env),Name), rcov=~vs(us(Env),units), data=DT) summary(ans3) # ####==========================================#### # #### Multivariate homogeneous variance models #### # ####==========================================#### # # ## Multivariate Compound simmetry (CS) model # DT$EnvName <- paste(DT$Env,DT$Name) # ans4 <- mmer(cbind(Yield, Weight) ~ Env, # random= ~ vs(Name) + vs(EnvName), # rcov= ~ vs(units), # data=DT) # summary(ans4) # # ####=============================================#### # #### Multivariate heterogeneous variance models #### # ####=============================================#### # # ## Multivariate Compound simmetry (CS) + Diagonal (DIAG) model # ans5 <- mmer(cbind(Yield, Weight) ~ Env, # random= ~ vs(Name) + vs(ds(Env),Name), # rcov= ~ vs(ds(Env),units), # data=DT) # summary(ans5) # # ####===========================================#### # #### Multivariate unstructured variance models #### # ####===========================================#### # # ans6 <- mmer(cbind(Yield, Weight) ~ Env, # random= ~ vs(us(Env),Name), # rcov= ~ vs(ds(Env),units), # data=DT) # summary(ans6)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.