Synthetic multivariate data with spatial and non-spatial variance structures
The synthetic dataset describes a stationary and isotropic bivariate process. Please refer to the vignette Section 4.2 for specifics.
data(FBC07.dat)
A data frame of 250 rows and 4 columns. Columns 1 and 2 are coordinates and columns 3 and 4 are response variables.
Finley A.O., S. Banerjee, and B.P. Carlin (2007) spBayes: R package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models. Journal of Statistical Software.
## Not run: data(FBC07.dat) library(geoR) max <- 40 bins <- 20 pts <- 1:150 vario.1 <- variog(coords=FBC07.dat[pts,1:2], data=FBC07.dat[pts,3], uvec=(seq(0, max, length=bins))) vario.2 <- variog(coords=FBC07.dat[pts,1:2], data=FBC07.dat[pts,4], uvec=(seq(0,max, length=bins))) vario.fit.1 <-variofit(vario.1, ini.cov.pars=c(5.0, 1.0), cov.model="exponential", minimisation.function="nls", weights="equal") vario.fit.2 <-variofit(vario.2, ini.cov.pars=c(5.0, 10.0), cov.model="exponential", minimisation.function="nls", weights="equal") par(mfrow=c(1,2)) plot(vario.1$u, vario.1$v, axes=FALSE, type = "n", ylim=c(0,15), xlab="Distance", ylab="Semivariance") points(vario.1$u, vario.1$v, pch=19, cex=0.5) axis(1, seq(0,max,10)) axis(2, seq(0,15,5)) abline(h=vario.fit.1$nugget) abline(h=vario.fit.1$cov.pars[1]+vario.fit.1$nugget) abline(v=3/(1/vario.fit.1$cov.pars[2])) lines(vario.fit.1) plot(vario.2$u, vario.2$v, axes=FALSE, type = "n", ylim=c(0,15), xlab="Distance", ylab="") points(vario.2$u, vario.2$v, pch=19, cex=0.5) axis(1, seq(0,max,10)) abline(h=vario.fit.2$nugget) abline(h=vario.fit.2$cov.pars[1]+vario.fit.2$nugget) abline(v=3/(1/vario.fit.2$cov.pars[2])) lines(vario.fit.2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.