Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

bayesLMRef

Simple Bayesian linear model with non-informative priors


Description

Given a lm object, the bayesLMRef function fits a simple Bayesian linear model with reference (non-informative) priors.

Usage

bayesLMRef(lm.obj, n.samples, ...)

Arguments

lm.obj

an object returned by lm.

n.samples

the number of posterior samples to collect.

...

currently no additional arguments.

Details

See page 355 in Gelman et al. (2004).

Value

An object of class bayesLMRef, which is a list with at least the following tag:

p.beta.tauSq.samples

a coda object of posterior samples for the defined parameters.

Author(s)

Sudipto Banerjee sudiptob@biostat.umn.edu,
Andrew O. Finley finleya@msu.edu

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC Press.

Examples

## Not run: 
set.seed(1)

n <- 100
X <- as.matrix(cbind(1, rnorm(n)))
B <- as.matrix(c(1,5))
tau.sq <- 0.1
y <- rnorm(n, X%*%B, sqrt(tau.sq))

lm.obj <- lm(y ~ X-1)

summary(lm.obj)

##Now with bayesLMRef
n.samples <- 500

m.1 <- bayesLMRef(lm.obj, n.samples)

summary(m.1$p.beta.tauSq.samples)

## End(Not run)

spBayes

Univariate and Multivariate Spatial-Temporal Modeling

v0.4-3
GPL (>= 2)
Authors
Andrew Finley [aut, cre], Sudipto Banerjee [aut]
Initial release
2020-02-06

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.