Simple Bayesian linear model with non-informative priors
Given a lm
object, the bayesLMRef
function fits a
simple Bayesian linear model with reference (non-informative) priors.
bayesLMRef(lm.obj, n.samples, ...)
lm.obj |
an object returned by |
n.samples |
the number of posterior samples to collect. |
... |
currently no additional arguments. |
See page 355 in Gelman et al. (2004).
An object of class bayesLMRef
, which is a list with at
least the following tag:
p.beta.tauSq.samples |
a |
Sudipto Banerjee sudiptob@biostat.umn.edu,
Andrew O. Finley finleya@msu.edu
Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC Press.
## Not run: set.seed(1) n <- 100 X <- as.matrix(cbind(1, rnorm(n))) B <- as.matrix(c(1,5)) tau.sq <- 0.1 y <- rnorm(n, X%*%B, sqrt(tau.sq)) lm.obj <- lm(y ~ X-1) summary(lm.obj) ##Now with bayesLMRef n.samples <- 500 m.1 <- bayesLMRef(lm.obj, n.samples) summary(m.1$p.beta.tauSq.samples) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.