Feature Transformation – MinMaxScaler (Estimator)
Rescale each feature individually to a common range [min, max] linearly using column summary statistics, which is also known as min-max normalization or Rescaling
ft_min_max_scaler(
x,
input_col = NULL,
output_col = NULL,
min = 0,
max = 1,
uid = random_string("min_max_scaler_"),
...
)x |
A |
input_col |
The name of the input column. |
output_col |
The name of the output column. |
min |
Lower bound after transformation, shared by all features Default: 0.0 |
max |
Upper bound after transformation, shared by all features Default: 1.0 |
uid |
A character string used to uniquely identify the feature transformer. |
... |
Optional arguments; currently unused. |
In the case where x is a tbl_spark, the estimator fits against x
to obtain a transformer, which is then immediately used to transform x, returning a tbl_spark.
The object returned depends on the class of x.
spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to
a Spark Transformer or Estimator object and can be used to compose
Pipeline objects.
ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with
the transformer or estimator appended to the pipeline.
tbl_spark: When x is a tbl_spark, a transformer is constructed then
immediately applied to the input tbl_spark, returning a tbl_spark
See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers:
ft_binarizer(),
ft_bucketizer(),
ft_chisq_selector(),
ft_count_vectorizer(),
ft_dct(),
ft_elementwise_product(),
ft_feature_hasher(),
ft_hashing_tf(),
ft_idf(),
ft_imputer(),
ft_index_to_string(),
ft_interaction(),
ft_lsh,
ft_max_abs_scaler(),
ft_ngram(),
ft_normalizer(),
ft_one_hot_encoder_estimator(),
ft_one_hot_encoder(),
ft_pca(),
ft_polynomial_expansion(),
ft_quantile_discretizer(),
ft_r_formula(),
ft_regex_tokenizer(),
ft_robust_scaler(),
ft_sql_transformer(),
ft_standard_scaler(),
ft_stop_words_remover(),
ft_string_indexer(),
ft_tokenizer(),
ft_vector_assembler(),
ft_vector_indexer(),
ft_vector_slicer(),
ft_word2vec()
## Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
features <- c("Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width")
iris_tbl %>%
ft_vector_assembler(
input_col = features,
output_col = "features_temp"
) %>%
ft_min_max_scaler(
input_col = "features_temp",
output_col = "features"
)
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.