Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

raster.gaussian.smooth

Gaussian smoothing of raster


Description

Applies a Gaussian smoothing kernel to smooth raster.

Usage

raster.gaussian.smooth(x, sigma = 2, n = 5, type = mean, ...)

Arguments

x

raster object

sigma

standard deviation (sigma) of kernel (default is 2)

n

Size of the focal matrix, single value (default is 5 for 5x5 window)

type

The statistic to use in the smoothing operator (suggest mean or sd)

...

Additional arguments passed to raster::focal

Value

raster class object of the local distributional moment

Note

This is a simple wrapper for the focal function, returning local statistical moments

Author(s)

Jeffrey S. Evans <jeffrey_evans@tnc.org>

Examples

library(raster)
   r <- raster(nrows=500, ncols=500, xmn=571823, xmx=616763, 
               ymn=4423540, ymx=4453690)
proj4string(r) <- crs("+proj=utm +zone=12 +datum=NAD83 +units=m +no_defs")
   r[] <- runif(ncell(r), 1000, 2500)
   r <- focal(r, focalWeight(r, 150, "Gauss") )
 
 # Calculate Gaussian smoothing with sigma(s) = 1-4
 g1 <- raster.gaussian.smooth(r, sigma=1, nc=11)
 g2 <- raster.gaussian.smooth(r, sigma=2, nc=11)
 g3 <- raster.gaussian.smooth(r, sigma=3, nc=11)
 g4 <- raster.gaussian.smooth(r, sigma=4, nc=11)

opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2)) 
  plot(g1, main="Gaussian smoothing sigma = 1") 
  plot(g2, main="Gaussian smoothing sigma = 2")
  plot(g3, main="Gaussian smoothing sigma = 3")
  plot(g4, main="Gaussian smoothing sigma = 4")
par(opar)

spatialEco

Spatial Analysis and Modelling Utilities

v1.3-6
GPL-3
Authors
Jeffrey S. Evans [aut, cre], Melanie A. Murphy [ctb], Karthik Ram [ctb]
Initial release
2021-03-24

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.