Generate N Random Points
Generate a random point pattern containing n independent, identically distributed random points with any specified distribution.
rpoint(n, f, fmax=NULL, win=unit.square(),
..., giveup=1000, verbose=FALSE,
nsim=1, drop=TRUE, forcewin=FALSE)n |
Number of points to generate. |
f |
The probability density of the points,
possibly un-normalised.
Either a constant,
a function |
fmax |
An upper bound on the values of |
win |
Window in which to simulate the pattern.
(Ignored if |
... |
Arguments passed to the function |
giveup |
Number of attempts in the rejection method after which the algorithm should stop trying to generate new points. |
verbose |
Flag indicating whether to report details of performance of the simulation algorithm. |
nsim |
Number of simulated realisations to be generated. |
drop |
Logical. If |
forcewin |
Logical. If |
This function generates n independent, identically distributed
random points with common probability density proportional to
f.
The argument f may be
uniformly distributed random points will be generated.
random points will be generated
in the window win with probability density proportional
to f(x,y,...) where x and y are the cartesian
coordinates. The function f must accept
two vectors of coordinates x,y and return the corresponding
vector of function values. Additional arguments ... of any kind
may be passed to the function.
if f is a pixel image
(object of class "im", see im.object)
then random points will be generated
with probability density
proportional to the pixel values of f.
To be precise, pixels are selected with probabilities proportional
to the pixel values, and within each selected pixel,
a point is generated with a uniform distribution inside the pixel.
The window of the simulated point pattern is determined as follows.
If forcewin=FALSE (the default) then the argument
win is ignored, and the simulation window is the
window of the pixel image, Window(f).
If forcefit=TRUE then the simulation window is win.
The algorithm is as follows:
If f is a constant, we invoke runifpoint.
If f is a function, then we use the rejection method.
Proposal points are generated from the uniform distribution.
A proposal point (x,y) is accepted with probability
f(x,y,...)/fmax and otherwise rejected.
The algorithm continues until n points have been
accepted. It gives up after giveup * n proposals
if there are still fewer than n points.
If f is a pixel image, then a random sequence of
pixels is selected (using sample)
with probabilities proportional to the
pixel values of f. Then for each pixel in the sequence
we generate a uniformly distributed random point in that pixel.
The algorithm for pixel images is more efficient than that for functions.
A point pattern (an object of class "ppp")
if nsim=1, or a list of point patterns if nsim > 1.
Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak rubak@math.aau.dk.
# 100 uniform random points in the unit square
X <- rpoint(100)
# 100 random points with probability density proportional to x^2 + y^2
X <- rpoint(100, function(x,y) { x^2 + y^2}, 1)
# `fmax' may be omitted
X <- rpoint(100, function(x,y) { x^2 + y^2})
# irregular window
X <- rpoint(100, function(x,y) { x^2 + y^2}, win=letterR)
# make a pixel image
Z <- setcov(letterR)
# 100 points with density proportional to pixel values
X <- rpoint(100, Z)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.