Calculate the mean and its variation using survey methods
survey_mean( x, na.rm = FALSE, vartype = c("se", "ci", "var", "cv"), level = 0.95, proportion = FALSE, prop_method = c("logit", "likelihood", "asin", "beta", "mean"), deff = FALSE, df = NULL, ... ) survey_prop( vartype = c("se", "ci", "var", "cv"), level = 0.95, proportion = FALSE, prop_method = c("logit", "likelihood", "asin", "beta", "mean"), deff = FALSE, df = NULL, ... )
x |
A variable or expression, or empty |
na.rm |
A logical value to indicate whether missing values should be dropped |
vartype |
Report variability as one or more of: standard error ("se", default), confidence interval ("ci"), variance ("var") or coefficient of variation ("cv"). |
level |
(For vartype = "ci" only) A single number or vector of numbers indicating the confidence level |
proportion |
Use methods to calculate the proportion that may have more accurate
confidence intervals near 0 and 1. Based on
|
prop_method |
Type of proportion method to use if proportion is |
deff |
A logical value to indicate whether the design effect should be returned. |
df |
(For vartype = "ci" only) A numeric value indicating the degrees of freedom
for t-distribution. The default (NULL) uses |
... |
Ignored |
library(survey) data(api) dstrata <- apistrat %>% as_survey_design(strata = stype, weights = pw) dstrata %>% summarise(api99_mn = survey_mean(api99), api_diff = survey_mean(api00 - api99, vartype = c("ci", "cv"))) dstrata %>% group_by(awards) %>% summarise(api00 = survey_mean(api00)) # Leave x empty to calculate the proportion in each group dstrata %>% group_by(awards) %>% summarise(pct = survey_mean()) # Setting proportion = TRUE uses a different method for calculating confidence intervals dstrata %>% summarise(high_api = survey_mean(api00 > 875, proportion = TRUE, vartype = "ci")) # level takes a vector for multiple levels of confidence intervals dstrata %>% summarise(api99 = survey_mean(api99, vartype = "ci", level = c(0.95, 0.65))) # Note that the default degrees of freedom in srvyr is different from # survey, so your confidence intervals might not be exact matches. To # Replicate survey's behavior, use df = Inf dstrata %>% summarise(srvyr_default = survey_mean(api99, vartype = "ci"), survey_defualt = survey_mean(api99, vartype = "ci", df = Inf)) comparison <- survey::svymean(~api99, dstrata) confint(comparison) # survey's default confint(comparison, df = survey::degf(dstrata)) # srvyr's default
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.