Calculate the quantile and its variation using survey methods
Calculate quantiles from complex survey data. A wrapper
around svyquantile
. survey_quantile
and
survey_median
should always be called from summarise
.
survey_quantile( x, quantiles, na.rm = FALSE, vartype = c("se", "ci", "var", "cv"), level = 0.95, q_method = "linear", f = 1, interval_type = c("Wald", "score", "betaWald", "probability", "quantile"), ties = c("discrete", "rounded"), df = NULL, ... ) survey_median( x, na.rm = FALSE, vartype = c("se", "ci"), level = 0.95, q_method = "linear", f = 1, interval_type = c("Wald", "score", "betaWald", "probability", "quantile"), ties = c("discrete", "rounded"), df = NULL, ... )
x |
A variable or expression |
quantiles |
A vector of quantiles to calculate |
na.rm |
A logical value to indicate whether missing values should be dropped |
vartype |
NULL to report no variability (default), otherwise one or more of: standard error ("se") confidence interval ("ci") (variance and coefficient of variation not available). |
level |
A single number indicating the confidence level (only one level allowed) |
q_method |
See "method" in |
f |
See |
interval_type |
See |
ties |
See |
df |
A number indicating the degrees of freedom for t-distribution. The
default, Inf uses the normal distribution (matches the survey package).
Also, has no effect for |
... |
Ignored |
library(survey) data(api) dstrata <- apistrat %>% as_survey_design(strata = stype, weights = pw) dstrata %>% summarise(api99 = survey_quantile(api99, c(0.25, 0.5, 0.75)), api00 = survey_median(api00, vartype = c("ci"))) dstrata %>% group_by(awards) %>% summarise(api00 = survey_median(api00))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.