Calculate the quantile and its variation using survey methods
Calculate quantiles from complex survey data. A wrapper
around svyquantile. survey_quantile and
survey_median should always be called from summarise.
survey_quantile(
x,
quantiles,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),
level = 0.95,
q_method = "linear",
f = 1,
interval_type = c("Wald", "score", "betaWald", "probability", "quantile"),
ties = c("discrete", "rounded"),
df = NULL,
...
)
survey_median(
x,
na.rm = FALSE,
vartype = c("se", "ci"),
level = 0.95,
q_method = "linear",
f = 1,
interval_type = c("Wald", "score", "betaWald", "probability", "quantile"),
ties = c("discrete", "rounded"),
df = NULL,
...
)x |
A variable or expression |
quantiles |
A vector of quantiles to calculate |
na.rm |
A logical value to indicate whether missing values should be dropped |
vartype |
NULL to report no variability (default), otherwise one or more of: standard error ("se") confidence interval ("ci") (variance and coefficient of variation not available). |
level |
A single number indicating the confidence level (only one level allowed) |
q_method |
See "method" in |
f |
See |
interval_type |
See |
ties |
See |
df |
A number indicating the degrees of freedom for t-distribution. The
default, Inf uses the normal distribution (matches the survey package).
Also, has no effect for |
... |
Ignored |
library(survey)
data(api)
dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)
dstrata %>%
summarise(api99 = survey_quantile(api99, c(0.25, 0.5, 0.75)),
api00 = survey_median(api00, vartype = c("ci")))
dstrata %>%
group_by(awards) %>%
summarise(api00 = survey_median(api00))Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.