Graphical Summary of the Posterior Predictive Distribution
plot.svpredict
and plot.svlpredict
generate some plots
visualizing the posterior predictive distribution of future volatilites and
future observations.
## S3 method for class 'svpredict' plot(x, quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95), ...)
Called for its side effects. Returns argument x
invisibly.
Note that svpredict
or svlpredict
objects can also be
used within plot.svdraws
for a possibly more useful
visualization. See the examples in predict.svdraws
and
those below for use cases.
Other plotting:
paradensplot()
,
paratraceplot.svdraws()
,
paratraceplot()
,
plot.svdraws()
,
volplot()
Other plotting:
paradensplot()
,
paratraceplot.svdraws()
,
paratraceplot()
,
plot.svdraws()
,
volplot()
## Simulate a short and highly persistent SV process sim <- svsim(100, mu = -10, phi = 0.99, sigma = 0.1) ## Obtain 5000 draws from the sampler (that's not a lot) draws <- svsample(sim$y, draws = 5000, burnin = 1000) ## Predict 10 steps ahead pred <- predict(draws, 10) ## Visualize the predicted distributions plot(pred) ## Plot the latent volatilities and some forecasts plot(draws, forecast = pred)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.