Surveillance for Count Time Series Using the Classic Farrington Method
The function takes range
values of the surveillance time
series disProgObj
and for each time point uses a GLM to
predict the number of counts according to the procedure by
Farrington et al. (1996). This is then compared to the observed
number of counts. If the observation is above a specific quantile of
the prediction interval, then an alarm is raised.
algo.farrington(disProgObj, control=list( range=NULL, b=5, w=3, reweight=TRUE, verbose=FALSE, plot=FALSE, alpha=0.05, trend=TRUE, limit54=c(5,4), powertrans="2/3", fitFun="algo.farrington.fitGLM.fast"))
disProgObj |
object of class disProgObj (including the |
control |
list of control parameters
|
The following steps are performed according to the Farrington et al. (1996) paper.
fit of the initial model and initial estimation of mean and overdispersion.
calculation of the weights omega (correction for past outbreaks)
refitting of the model
revised estimation of overdispersion
rescaled model
omission of the trend, if it is not significant
repetition of the whole procedure
calculation of the threshold value
computation of exceedance score
An object of class "survRes"
.
M. Höhle
A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996), J. R. Statist. Soc. A, 159, 547-563.
An improved Farrington algorithm is available as function
farringtonFlexible
.
#Read Salmonella Agona data data("salmonella.agona") #Do surveillance for the last 100 weeks. n <- length(salmonella.agona$observed) #Set control parameters. control <- list(b=4,w=3,range=(n-100):n,reweight=TRUE, verbose=FALSE,alpha=0.01) res <- algo.farrington(salmonella.agona,control=control) #Plot the result. plot(res,disease="Salmonella Agona",method="Farrington") ## Not run: #Generate Poisson counts and convert into an "sts" object set.seed(123) x <- rpois(520,lambda=1) sts <- sts(observed=x, state=x*0, freq=52) #Compare timing of the two possible fitters for algo.farrington (here using S4) system.time( sts1 <- farrington(sts, control=list(range=312:520, fitFun="algo.farrington.fitGLM.fast"))) system.time( sts2 <- farrington(sts, control=list(range=312:520, fitFun="algo.farrington.fitGLM"))) #Check if results are the same stopifnot(upperbound(sts1) == upperbound(sts2)) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.