Summary Table Generation for Several Disease Chains
Summary table generation for several disease chains.
algo.summary(compMatrices)
compMatrices |
list of matrices constructed by algo.compare. |
As lag the mean of all single lags is returned. TP values, FN values,
TN values and FP values are summed up. dist
, sens
and
spec
are new computed on the basis of the new TP value, FN value,
TN value and FP value.
a matrix summing up the singular input matrices
# Create a test object disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 5) disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 17) # Let this object be tested from any methods in range = 200:400 range <- 200:400 control <- list(list(funcName = "rki1", range = range), list(funcName = "rki2", range = range), list(funcName = "rki3", range = range)) compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control)) compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control)) compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control)) algo.summary( list(a=compMatrix1, b=compMatrix2, c=compMatrix3) )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.