Bayesian Outbreak Detection in the Presence of Reporting Delays
The function takes range
values of the surveillance time
series sts
and for each time point uses a Bayesian model of the negative binomial family with
log link inspired by the work of Noufaily et al. (2012) and of Manitz and Höhle (2014). It allows delay-corrected aberration detection as explained in Salmon et al. (2015). A reportingTriangle
has to be provided in the control
slot.
bodaDelay(sts, control = list( range = NULL, b = 5, w = 3, mc.munu = 100, mc.y = 10, pastAberrations = TRUE, verbose = FALSE, alpha = 0.05, trend = TRUE, limit54 = c(5,4), inferenceMethod = c("asym","INLA"), quantileMethod = c("MC","MM"), noPeriods = 1, pastWeeksNotIncluded = NULL, delay = FALSE))
sts |
sts-object to be analysed. Needs to have a reporting triangle. |
control |
list of control arguments:
|
Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563.
Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine, 32 (7), 1206-1222.
Salmon, M., Schumacher, D., Stark, K., Höhle, M. (2015): Bayesian outbreak detection in the presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067.
## Not run: data("stsNewport") salm.Normal <- list() salmDelayAsym <- list() for (week in 43:45){ listWeeks <- as.Date(row.names(stsNewport@control$reportingTriangle$n)) dateObs <- listWeeks[isoWeekYear(listWeeks)$ISOYear==2011 & isoWeekYear(listWeeks)$ISOWeek==week] stsC <- sts_observation(stsNewport, dateObservation=dateObs, cut=TRUE) inWeeks <- with(isoWeekYear(epoch(stsC)), ISOYear == 2011 & ISOWeek >= 40 & ISOWeek <= 48) rangeTest <- which(inWeeks) alpha <- 0.07 # Control slot for Noufaily method controlNoufaily <- list(range=rangeTest,noPeriods=10, b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=alpha*2, limit54=c(0,50)) # Control slot for the Proposed algorithm with D=0 correction controlNormal <- list(range = rangeTest, b = 4, w = 3, reweight = TRUE, mc.munu=10000, mc.y=100, verbose = FALSE, alpha = alpha, trend = TRUE, limit54=c(0,50), noPeriods = 10, pastWeeksNotIncluded = 26, delay=FALSE) # Control slot for the Proposed algorithm with D=10 correction controlDelayNorm <- list(range = rangeTest, b = 4, w = 3, reweight = FALSE, mc.munu=10000, mc.y=100, verbose = FALSE, alpha = alpha, trend = TRUE, limit54=c(0,50), noPeriods = 10, pastWeeksNotIncluded = 26, delay=TRUE,inferenceMethod="asym") set.seed(1) salm.Normal[[week]] <- farringtonFlexible(stsC, controlNoufaily) salmDelayAsym[[week]] <- bodaDelay(stsC, controlDelayNorm) } opar <- par(mfrow=c(2,3)) lapply(salmDelayAsym[c(43,44,45)],plot, legend=NULL, main="", ylim=c(0,35)) lapply(salm.Normal[c(43,44,45)],plot, legend=NULL, main="", ylim=c(0,35)) par(opar) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.