Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

get_pycox_activation

Get Pytorch Activation Function


Description

Helper function to return a class or constructed object for pytorch activation function from torch.nn.modules.activation.

Usage

get_pycox_activation(
  activation = "relu",
  construct = TRUE,
  alpha = 1,
  dim = NULL,
  lambd = 0.5,
  min_val = -1,
  max_val = 1,
  negative_slope = 0.01,
  num_parameters = 1L,
  init = 0.25,
  lower = 1/8,
  upper = 1/3,
  beta = 1,
  threshold = 20,
  value = 20
)

Arguments

activation

(character(1))
Activation function method, see details for list of implemented methods.

construct

(logical(1))
If TRUE (default) returns constructed object, otherwise a class.

alpha

(numeric(1))
Passed to celu and elu.

dim

(integer(1))
Passed to glu, logsoftmax, softmax, and

lambd

(numeric(1))
Passed to hardshrink and softshrink.

min_val, max_val

(numeric(1))
Passed to hardtanh.

negative_slope

(numeric(1))
Passed to leakyrelu.

num_parameters

(integer(1))
Passed to prelu.

init

(numeric(1))
Passed to prelu.

lower, upper

(numeric(1))
Passed to rrelu.

beta

(numeric(1))
Passed to softplus.

threshold

(numeric(1))
Passed to softplus and threshold.

value

(numeric(1))
Passed to threshold.

Details

Implemented methods (with help pages) are

  • "celu"
    reticulate::py_help(torch$nn$modules$activation$CELU)

  • "elu"
    reticulate::py_help(torch$nn$modules$activation$ELU)

  • "gelu"
    reticulate::py_help(torch$nn$modules$activation$GELU)

  • "glu"
    reticulate::py_help(torch$nn$modules$activation$GLU)

  • "hardshrink"
    reticulate::py_help(torch$nn$modules$activation$Hardshrink)

  • "hardsigmoid"
    reticulate::py_help(torch$nn$modules$activation$Hardsigmoid)

  • "hardswish"
    reticulate::py_help(torch$nn$modules$activation$Hardswish)

  • "hardtanh"
    reticulate::py_help(torch$nn$modules$activation$Hardtanh)

  • "relu6"
    reticulate::py_help(torch$nn$modules$activation$ReLU6)

  • "leakyrelu"
    reticulate::py_help(torch$nn$modules$activation$LeakyReLU)

  • "logsigmoid"
    reticulate::py_help(torch$nn$modules$activation$LogSigmoid)

  • "logsoftmax"
    reticulate::py_help(torch$nn$modules$activation$LogSoftmax)

  • "prelu"
    reticulate::py_help(torch$nn$modules$activation$PReLU)

  • "rrelu"
    reticulate::py_help(torch$nn$modules$activation$RReLU)

  • "relu"
    reticulate::py_help(torch$nn$modules$activation$ReLU)

  • "selu"
    reticulate::py_help(torch$nn$modules$activation$SELU)

  • "sigmoid"
    reticulate::py_help(torch$nn$modules$activation$Sigmoid)

  • "softmax"
    reticulate::py_help(torch$nn$modules$activation$Softmax)

  • "softmax2d"
    reticulate::py_help(torch$nn$modules$activation$Softmax2d)

  • "softmin"
    reticulate::py_help(torch$nn$modules$activation$Softmin)

  • "softplus"
    reticulate::py_help(torch$nn$modules$activation$Softplus)

  • "softshrink"
    reticulate::py_help(torch$nn$modules$activation$Softshrink)

  • "softsign"
    reticulate::py_help(torch$nn$modules$activation$Softsign)

  • "tanh"
    reticulate::py_help(torch$nn$modules$activation$Tanh)

  • "tanhshrink"
    reticulate::py_help(torch$nn$modules$activation$Tanhshrink)

  • "threshold"
    reticulate::py_help(torch$nn$modules$activation$Threshold)

Examples

if (requireNamespaces("reticulate")) {
  #' # returns constructed objects
  get_pycox_activation(activation = "relu", construct = TRUE)

  # returns class
  get_pycox_activation(activation = "selu", construct = FALSE)
}

survivalmodels

Models for Survival Analysis

v0.1.11
MIT + file LICENSE
Authors
Raphael Sonabend [aut, cre] (<https://orcid.org/0000-0001-9225-4654>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.