Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

id.chol

Recursive identification of SVAR models via Cholesky decomposition


Description

Given an estimated VAR model, this function uses the Cholesky decomposition to identify the structural impact matrix B of the corresponding SVAR model

y_t=c_t+A_1 y_{t-1}+...+A_p y_{t-p}+u_t =c_t+A_1 y_{t-1}+...+A_p y_{t-p}+B ε_t.

Matrix B corresponds to the decomposition of the least squares covariance matrix Σ_u=BΛ_t B'.

Usage

id.chol(x, order_k = NULL)

Arguments

x

An object of class 'vars', 'vec2var', 'nlVar'. Estimated VAR object

order_k

Vector. Vector of characters or integers specifying the assumed structure of the recursive causality. Change the causal ordering in the instantaneous effects without permuting variables and re-estimating the VAR model.

Value

A list of class "svars" with elements

B

Estimated structural impact matrix B, i.e. unique decomposition of the covariance matrix of reduced form residuals

n

Number of observations

method

Method applied for identification

order_k

Ordering of the variables as assumed for recursive causality

A_hat

Estimated VAR parameter

type

Type of the VAR model, e.g. 'const'

y

Data matrix

p

Number of lags

K

Dimension of the VAR

VAR

Estimated input VAR object

References

Luetkepohl, H., 2005. New introduction to multiple time series analysis, Springer-Verlag, Berlin.

See Also

For alternative identification approaches see id.st, id.cvm, id.cv, id.dc or id.ngml

Examples

# data contains quarterly observations from 1965Q1 to 2008Q3
# x = output gap
# pi = inflation
# i = interest rates
set.seed(23211)
v1 <- vars::VAR(USA, lag.max = 10, ic = "AIC" )
x1 <- id.chol(v1)
x2 <- id.chol(v1, order_k = c("pi", "x", "i")) ## order_k = c(2,1,3)
summary(x1)


# impulse response analysis
i1 <- irf(x1, n.ahead = 30)
i2 <- irf(x2, n.ahead = 30)
plot(i1, scales = 'free_y')
plot(i2, scales = 'free_y')

svars

Data-Driven Identification of SVAR Models

v1.3.7
MIT + file LICENSE
Authors
Alexander Lange [aut, cre], Bernhard Dalheimer [aut], Helmut Herwartz [aut], Simone Maxand [aut], Hannes Riebl [ctb]
Initial release
2021-03-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.