A d-variate OneHotCategorical Keras layer from d params.
Typical choices for convert_to_tensor_fn include:
tfp$distributions$Distribution$sample
tfp$distributions$Distribution$mean
tfp$distributions$Distribution$mode
tfp$distributions$OneHotCategorical$logits
layer_one_hot_categorical( object, event_size, convert_to_tensor_fn = tfp$distributions$Distribution$sample, sample_dtype = NULL, validate_args = FALSE, ... )
object | 
 Model or layer object  | 
event_size | 
 Scalar   | 
convert_to_tensor_fn | 
 A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value:   | 
sample_dtype | 
 
  | 
validate_args | 
 Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE.  | 
... | 
 Additional arguments passed to   | 
a Keras layer
For an example how to use in a Keras model, see layer_independent_normal().
Other distribution_layers: 
layer_categorical_mixture_of_one_hot_categorical(),
layer_distribution_lambda(),
layer_independent_bernoulli(),
layer_independent_logistic(),
layer_independent_normal(),
layer_independent_poisson(),
layer_kl_divergence_add_loss(),
layer_kl_divergence_regularizer(),
layer_mixture_logistic(),
layer_mixture_normal(),
layer_mixture_same_family(),
layer_multivariate_normal_tri_l()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.