Generate proposal for the Random Walk Metropolis algorithm.
Warning: this kernel will not result in a chain which converges to the
target_log_prob. To get a convergent MCMC, use
mcmc_random_walk_metropolis(...) or
mcmc_metropolis_hastings(mcmc_uncalibrated_random_walk(...)).
mcmc_uncalibrated_random_walk( target_log_prob_fn, new_state_fn = NULL, seed = NULL, name = NULL )
target_log_prob_fn |
Function which takes an argument like
|
new_state_fn |
Function which takes a list of state parts and a
seed; returns a same-type |
seed |
integer to seed the random number generator. |
name |
String name prefixed to Ops created by this function.
Default value: |
a Monte Carlo sampling kernel
Other mcmc_kernels:
mcmc_dual_averaging_step_size_adaptation(),
mcmc_hamiltonian_monte_carlo(),
mcmc_metropolis_adjusted_langevin_algorithm(),
mcmc_metropolis_hastings(),
mcmc_no_u_turn_sampler(),
mcmc_random_walk_metropolis(),
mcmc_replica_exchange_mc(),
mcmc_simple_step_size_adaptation(),
mcmc_slice_sampler(),
mcmc_transformed_transition_kernel(),
mcmc_uncalibrated_hamiltonian_monte_carlo(),
mcmc_uncalibrated_langevin()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.