Create correlation plots for a mixture model
Creates a faceted plot of two-dimensional correlation plots and unidimensional density plots for an object of class 'tidyProfile'.
plot_bivariate( x, variables = NULL, sd = TRUE, cors = TRUE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, 0.1), return_list = FALSE )
x |
tidyProfile object to plot. A tidyProfile is one element of a tidyLPA analysis. |
variables |
Which variables to plot. If NULL, plots all variables that are present in all models. |
sd |
Logical. Whether to show the estimated standard deviations as lines emanating from the cluster centroid. |
cors |
Logical. Whether to show the estimated correlation (standardized covariance) as ellipses surrounding the cluster centroid. |
rawdata |
Logical. Whether to plot raw data, weighted by posterior class probability. |
bw |
Logical. Whether to make a black and white plot (for print) or a color plot. Defaults to FALSE, because these density plots are hard to read in black and white. |
alpha_range |
Numeric vector (0-1). Sets the transparency of geom_density and geom_point. |
return_list |
Logical. Whether to return a list of ggplot objects, or just the final plot. Defaults to FALSE. |
An object of class 'ggplot'.
Caspar J. van Lissa
# Example 1 iris_sample <- iris[c(1:10, 51:60, 101:110), ] # to make example run more quickly ## Not run: iris_sample %>% subset(select = c("Sepal.Length", "Sepal.Width")) %>% estimate_profiles(n_profiles = 2, models = 1) %>% plot_bivariate() ## End(Not run) # Example 2 ## Not run: mtcars %>% subset(select = c("wt", "qsec", "drat")) %>% poms() %>% estimate_profiles(3) %>% plot_bivariate() ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.