Conditional update of columns in data.table
Update or add columns when the given condition is met.
mutate_when
integrates mutate
and case_when
in dplyr and make a new tidy verb for data.table. mutate_vars
is
a super function to do updates in specific columns according to conditions.
mutate_when(.data, when, ..., by) mutate_vars(.data, .cols = NULL, .func, ..., by)
.data |
data.frame |
when |
An object which can be coerced to logical mode |
... |
Name-value pairs of expressions for |
by |
(Optional) Mutate by what group? |
.cols |
Any types that can be accepted by |
.func |
Function to be run within each column, should return a value or vectors with same length. |
data.table
iris[3:8,] iris[3:8,] %>% mutate_when(Petal.Width == .2, one = 1,Sepal.Length=2) iris %>% mutate_vars("Pe",scale) iris %>% mutate_vars(is.numeric,scale) iris %>% mutate_vars(-is.factor,scale) iris %>% mutate_vars(1:2,scale) iris %>% mutate_vars(.func = as.character)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.