Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

nn_pairwise_distance

Pairwise distance


Description

Computes the batchwise pairwise distance between vectors v_1, v_2 using the p-norm:

Usage

nn_pairwise_distance(p = 2, eps = 1e-06, keepdim = FALSE)

Arguments

p

(real): the norm degree. Default: 2

eps

(float, optional): Small value to avoid division by zero. Default: 1e-6

keepdim

(bool, optional): Determines whether or not to keep the vector dimension. Default: FALSE

Details

\Vert x \Vert _p = ≤ft( ∑_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}.

Shape

  • Input1: (N, D) where D = vector dimension

  • Input2: (N, D), same shape as the Input1

  • Output: (N). If keepdim is TRUE, then (N, 1).

Examples

if (torch_is_installed()) {
pdist <- nn_pairwise_distance(p=2)
input1 <- torch_randn(100, 128)
input2 <- torch_randn(100, 128)
output <- pdist(input1, input2)

}

torch

Tensors and Neural Networks with 'GPU' Acceleration

v0.3.0
MIT + file LICENSE
Authors
Daniel Falbel [aut, cre, cph], Javier Luraschi [aut], Dmitriy Selivanov [ctb], Athos Damiani [ctb], Christophe Regouby [ctb], Krzysztof Joachimiak [ctb], RStudio [cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.