Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

nn_selu

SELU module


Description

Applied element-wise, as:

Usage

nn_selu(inplace = FALSE)

Arguments

inplace

(bool, optional): can optionally do the operation in-place. Default: FALSE

Details

\mbox{SELU}(x) = \mbox{scale} * (\max(0,x) + \min(0, α * (\exp(x) - 1)))

with α = 1.6732632423543772848170429916717 and \mbox{scale} = 1.0507009873554804934193349852946.

More details can be found in the paper Self-Normalizing Neural Networks.

Shape

  • Input: (N, *) where * means, any number of additional dimensions

  • Output: (N, *), same shape as the input

Examples

if (torch_is_installed()) {
m <- nn_selu()
input <- torch_randn(2)
output <- m(input)

}

torch

Tensors and Neural Networks with 'GPU' Acceleration

v0.3.0
MIT + file LICENSE
Authors
Daniel Falbel [aut, cre, cph], Javier Luraschi [aut], Dmitriy Selivanov [ctb], Athos Damiani [ctb], Christophe Regouby [ctb], Krzysztof Joachimiak [ctb], RStudio [cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.