Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

nnf_pad

Pad


Description

Pads tensor.

Usage

nnf_pad(input, pad, mode = "constant", value = 0)

Arguments

input

(Tensor) N-dimensional tensor

pad

(tuple) m-elements tuple, where \frac{m}{2} ≤q input dimensions and m is even.

mode

'constant', 'reflect', 'replicate' or 'circular'. Default: 'constant'

value

fill value for 'constant' padding. Default: 0.

Padding size

The padding size by which to pad some dimensions of input are described starting from the last dimension and moving forward. ≤ft\lfloor\frac{\mbox{len(pad)}}{2}\right\rfloor dimensions of input will be padded. For example, to pad only the last dimension of the input tensor, then pad has the form (\mbox{padding\_left}, \mbox{padding\_right}); to pad the last 2 dimensions of the input tensor, then use (\mbox{padding\_left}, \mbox{padding\_right}, \mbox{padding\_top}, \mbox{padding\_bottom}); to pad the last 3 dimensions, use (\mbox{padding\_left}, \mbox{padding\_right}, \mbox{padding\_top}, \mbox{padding\_bottom} \mbox{padding\_front}, \mbox{padding\_back}).

Padding mode

See nn_constant_pad_2d, nn_reflection_pad_2d, and nn_replication_pad_2d for concrete examples on how each of the padding modes works. Constant padding is implemented for arbitrary dimensions. tensor, or the last 2 dimensions of 4D input tensor, or the last dimension of 3D input tensor. Reflect padding is only implemented for padding the last 2 dimensions of 4D input tensor, or the last dimension of 3D input tensor.


torch

Tensors and Neural Networks with 'GPU' Acceleration

v0.3.0
MIT + file LICENSE
Authors
Daniel Falbel [aut, cre, cph], Javier Luraschi [aut], Dmitriy Selivanov [ctb], Athos Damiani [ctb], Christophe Regouby [ctb], Krzysztof Joachimiak [ctb], RStudio [cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.