Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

nnf_poisson_nll_loss

Poisson_nll_loss


Description

Poisson negative log likelihood loss.

Usage

nnf_poisson_nll_loss(
  input,
  target,
  log_input = TRUE,
  full = FALSE,
  eps = 1e-08,
  reduction = "mean"
)

Arguments

input

tensor (N,*) where ** means, any number of additional dimensions

target

tensor (N,*) , same shape as the input

log_input

if TRUE the loss is computed as \exp(\mbox{input}) - \mbox{target} * \mbox{input}, if FALSE then loss is \mbox{input} - \mbox{target} * \log(\mbox{input}+\mbox{eps}). Default: TRUE.

full

whether to compute full loss, i. e. to add the Stirling approximation term. Default: FALSE.

eps

(float, optional) Small value to avoid evaluation of \log(0) when log_input=FALSE. Default: 1e-8

reduction

(string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'


torch

Tensors and Neural Networks with 'GPU' Acceleration

v0.3.0
MIT + file LICENSE
Authors
Daniel Falbel [aut, cre, cph], Javier Luraschi [aut], Dmitriy Selivanov [ctb], Athos Damiani [ctb], Christophe Regouby [ctb], Krzysztof Joachimiak [ctb], RStudio [cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.