Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

optim_asgd

Averaged Stochastic Gradient Descent optimizer


Description

Usage

optim_asgd(
  params,
  lr = 0.01,
  lambda = 1e-04,
  alpha = 0.75,
  t0 = 1e+06,
  weight_decay = 0
)

Arguments

params

(iterable): iterable of parameters to optimize or lists defining parameter groups

lr

(float): learning rate

lambda

(float, optional): decay term (default: 1e-4)

alpha

(float, optional): power for eta update (default: 0.75)

t0

(float, optional): point at which to start averaging (default: 1e6)

weight_decay

(float, optional): weight decay (L2 penalty) (default: 0)

Examples

if (torch_is_installed()) {
## Not run: 
optimizer <- optim_asgd(model$parameters(), lr=0.1)
optimizer$zero_grad()
loss_fn(model(input), target)$backward()
optimizer$step()

## End(Not run)

}

torch

Tensors and Neural Networks with 'GPU' Acceleration

v0.3.0
MIT + file LICENSE
Authors
Daniel Falbel [aut, cre, cph], Javier Luraschi [aut], Dmitriy Selivanov [ctb], Athos Damiani [ctb], Christophe Regouby [ctb], Krzysztof Joachimiak [ctb], RStudio [cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.