Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

optim_rprop

Implements the resilient backpropagation algorithm.


Description

Usage

optim_rprop(params, lr = 0.01, etas = c(0.5, 1.2), step_sizes = c(1e-06, 50))

Arguments

params

(iterable): iterable of parameters to optimize or lists defining parameter groups

lr

(float, optional): learning rate (default: 1e-2)

etas

(Tuple(float, float), optional): pair of (etaminus, etaplis), that are multiplicative increase and decrease factors (default: (0.5, 1.2))

step_sizes

(vector(float, float), optional): a pair of minimal and maximal allowed step sizes (default: (1e-6, 50))

Examples

if (torch_is_installed()) {
## Not run: 
optimizer <- optim_rprop(model$parameters(), lr=0.1)
optimizer$zero_grad()
loss_fn(model(input), target)$backward()
optimizer$step()

## End(Not run)

}

torch

Tensors and Neural Networks with 'GPU' Acceleration

v0.3.0
MIT + file LICENSE
Authors
Daniel Falbel [aut, cre, cph], Javier Luraschi [aut], Dmitriy Selivanov [ctb], Athos Damiani [ctb], Christophe Regouby [ctb], Krzysztof Joachimiak [ctb], RStudio [cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.