Classical and Robust Geweke and Porter-Hudak (GPH) estimators for the long-memory parameter d of a long-range dependent stationary processes
Estimate the fractional (or “memory”) parameter d of long-range dependent stationary processes by the method of Geweke and Porter-Hudak (GPH). (GPH-M) and (GPH-Qn) correspond to the estimators devised by Reisen et al. (2017) and Molinares (2009), respectively.
GPH_estimate(series, bandw.exp = 0.7, method = "GPH")
series |
univariate time series |
bandw.exp |
the bandwidth used in the regression equation |
method |
character string giving the type of GPH to be computed. Allowed values are " |
d
GPH estimate
sd.as
asymptotic standard deviation
sd.reg
standard error deviation
Valderio Reisen, Céline Lévy-Leduc and Higor Cotta.
Reisen, V. A. and Lévy-Leduc, C. and Taqqu, M. (2017) An M-estimator for the long-memory parameter. To appear in Journal of Statistical Planning and Inference.
Molinares, F. F. and Reisen, V. A., and Cribari-Neto, F. (2009) Robust estimation in long-memory processes under additive outliers. Journal of Statistical Planning and Inference, 139, 2511–2525. #' @references Geweke, J. and Porter-Hudak, S. (1983) The estimation and application of long memory time series models. Journal of Time Series Analysis, 4, 221–238.
library(fracdiff) simseries <- fracdiff.sim(1500, d = 0.3) GPH_estimate(simseries$series,method="GPH")$d ## Not run: GPH_estimate(simseries$series,method="GPH-Qn")$d GPH_estimate(simseries$series,method="GPH-M")$d ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.