(Perceptive) Linear Prediction
Compute autoregressive model from spectral magnitude samples via Levinson-Durbin recursion.
dolpc(x, modelorder = 8)
x |
Matrix of spectral magnitude samples (each sample/time frame in one column). |
modelorder |
Lag of the AR model. |
Returns a matrix of the normalized AR coefficients (depending on the input spectrum: LPC or PLP coefficients). Every column represents one time frame.
Sebastian Krey krey@statistik.tu-dortmund.de
Daniel P. W. Ellis: http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
testsound <- normalize(sine(400) + sine(1000) + square(250), "16") pspectrum <- powspec(testsound@left, testsound@samp.rate) aspectrum <- audspec(pspectrum, testsound@samp.rate)$aspectrum lpcas <- dolpc(aspectrum, 10)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.