Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

lisa

Local indicators of spatial association


Description

Calculate different statistics of local indicator of spatial association (LISA) for each cell in a raster data.

Usage

lisa(x, y, d1=0, d2, cell, statistic="I")

Arguments

x

a raster object (RasterLayer or RasterStack or RasterBrick)

y

a SpatialPoints object (optional)

d1

numeric. A number (distance), specifies local neighborhood size. Default is 0, means that the local neighborhood starts from the cell (distance = 0) and ends to a distance = d2

d2

numeric. A number (distance), specifies local neighborhood size. It specifies the distance to which should be considered as a local neighborhood around a cell

cell

numeric (optional). A cell number or a vector of cell numbers in the Raster object, at which LISA should be calculated

statistic

a character string specifying the LISA statistic that should be calculated. This can be one of "I", "c", "G", "G*", and "K1"

Details

This function can calculate different LISA statistics at each grid cell in Raster object. The statistics, implemented in this function, include local Moran's I ("I"), local Geary's c ("c"), local G and G* ("G" and "G*"), and local K1 statistics. This function returns standardized value (Z) for Moran, G and G*, and K1 statistics. If a SpatialPoints or a vector of numbers is defined for y or cell, the LISA is calculated only for the specified locations by points or cells.

Value

RasterLayer

if x is a RasterLayer and both y and cell are missed

RasterBrick

if x is a RasterStack or a RasterBrick and both y and cell are missed

numeric vector

if y or cell is specified

Author(s)

Babak Naimi naimi.b@gmail.com

References

Anselin, L. 1995. Local indicators of spatial association, Geographical Analysis, 27, 93–115;

Getis, A. and Ord, J. K. 1996 Local spatial statistics: an overview. In P. Longley and M. Batty (eds) Spatial analysis: modelling in a GIS environment (Cambridge: Geoinformation International), 261–277.

Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K., and Toxopeus, A.G. 2014. Where is positional uncertainty a problem for species distribution modelling?, Ecography 37 (2): 191-203.

Examples

## Not run: 


file <- system.file("external/spain.grd", package="usdm")

r <- brick(file) # reading a RasterBrick object including 10 rasters in Spain

r

plot(r) # visualize the raster layers

plot(r[[1]]) # visualize the first raster layer

r.I <- lisa(x=r[[1]],d1=0,d2=25000,statistic="I") # local Moran's I

plot(r.I)

# entering r instead of r[[1]], givees the indicator for each layer:
r.I <- lisa(x=r,d1=0,d2=25000,statistic="I")
plot(r.I)

r.c <- lisa(x=r[[1]],d1=0,d2=25000,statistic="c") # local Geary's c

plot(r.c)

r.g <- lisa(x=r[[1]],d1=0,d2=25000,statistic="G") # G statistic

plot(r.g)

r.g2 <- lisa(x=r[[1]],d1=0,d2=25000,statistic="G*") # G* statistic

plot(r.g2)

r.K1 <- lisa(x=r[[1]],d1=0,d2=30000,statistic="K1") # gives K1 statistic for each layer

plot(r.K1)

lisa(x=r,d1=0,d2=30000,cell=2000,statistic="I") # gives local Moran's I at cell number 2000
#for each raster layer in r

lisa(x=r,d1=0,d2=30000,cell=c(2000,2002,2003),statistic="c") # calculates local Moran's I
# at cell numbers of 2000,2002, and 2003 for each raster layer in r

sp <- sampleRandom(r[[1]],20,sp=TRUE) # draw 20 random points from r, 
# and returns a SpatialPointsDataFrame

plot(r[[1]])

points(sp)

lisa(x=r,y=sp,d1=0,d2=30000,statistic="I") # calculates the local Moran's I at 
# point locations in sp for each raster layer in r

## End(Not run)

usdm

Uncertainty Analysis for Species Distribution Models

v1.1-18
GPL (>= 3)
Authors
Babak Naimi
Initial release
2017-06-25

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.