Predicted synchrony of a wavelet linear model
Predicted synchrony of a wlm
object. This is described in the
first paragraph of Appendix S15 of Sheppard et al (2019).
predsync(wlmobj) ## S3 method for class 'wlm' predsync(wlmobj)
wlmobj |
A |
predsync
returns a tts
object. Plotting the magnitude
(see plotmag
) displays a picture of predicted synchrony versus time and
timescale that is comparable with the wavelet mean field (see wmf
) of
the response variable of the model. Calling the power
function on that
tts
object should give the same results as one of the columns of output
of syncexpl
. Only norm="powall"
implemented so far.
Thomas Anderson, anderstl@gmail.com, Jon Walter, jaw3es@virginia.edu; Lawrence Sheppard, lwsheppard@ku.edu; Daniel Reuman, reuman@ku.edu
Sheppard, LW et al. (2019) Synchrony is more than its top-down and climatic parts: interacting Moran effects on phytoplankton in British seas. Plos Computational Biology 15, e1006744. doi: 10.1371/journal.pcbi.1006744
times<-(-3:100) ts1<-sin(2*pi*times/10) ts2<-5*sin(2*pi*times/3) artsig_x<-matrix(NA,11,length(times)) #the driver for (counter in 1:11) { artsig_x[counter,]<-ts1+ts2+rnorm(length(times),mean=0,sd=.5) } times<-0:100 artsig_y<-matrix(NA,11,length(times)) #the driven for (counter1 in 1:11) { for (counter2 in 1:101) { artsig_y[counter1,counter2]<-mean(artsig_x[counter1,counter2:(counter2+2)]) } } artsig_y<-artsig_y+matrix(rnorm(length(times)*11,mean=0,sd=1),11,length(times)) artsig_x<-artsig_x[,4:104] artsig_i<-matrix(rnorm(11*length(times)),11,length(times)) #the irrelevant artsig_x<-cleandat(artsig_x,times,1)$cdat artsig_y<-cleandat(artsig_y,times,1)$cdat artsig_i<-cleandat(artsig_i,times,1)$cdat dat<-list(driven=artsig_y,driver=artsig_x,irrelevant=artsig_i) resp<-1 pred<-2:3 norm<-"powall" wlmobj<-wlm(dat,times,resp,pred,norm) res<-predsync(wlmobj)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.