predict.nls
predict.nls
## S3 method for class 'nls' predict( object, newdata = NULL, se.fit = FALSE, interval = "none", level = 0.95, ... )
object |
Object of class inheriting from "nls" |
newdata |
An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used. |
se.fit |
A switch indicating if standard errors are required. |
interval |
Type of interval calculation, "none" or "confidence" |
level |
Level of confidence interval to use |
... |
additional arguments affecting the predictions produced. |
predict.nls
produces a vector of predictions or a matrix of predictions and
bounds with column names fit
, lwr
, and upr
if interval is set.
If se.fit
is TRUE
, a list with the following components is returned:
fit |
vector or matrix as above |
se.fit |
standard error of predicted means |
residual.scale |
residual standard deviations |
df |
degrees of freedom for residual |
set.seed(12345) data_to_plot <- data.frame(x1 = rep(c(0, 25, 50, 100, 200, 400, 600), 10)) %>% dplyr::mutate(AUC = x1*rlnorm(length(x1), 0, 0.3), x2 = x1*stats::rlnorm(length(x1), 0, 0.3), Response = (15 + 50*x2/(20+x2))*stats::rlnorm(length(x2), 0, 0.3)) gg <- ggplot2::ggplot(data = data_to_plot, ggplot2::aes(x = AUC, y = Response)) + ggplot2::geom_point() + xgx_geom_smooth(method = "nls", method.args = list(formula = y ~ E0 + Emax* x / (EC50 + x), start = list(E0 = 15, Emax = 50, EC50 = 20) ), color = "black", size = 0.5, alpha = 0.25) gg mod <- stats::nls(formula = Response ~ E0 + Emax * AUC / (EC50 + AUC), data = data_to_plot, start = list(E0 = 15, Emax = 50, EC50 = 20)) predict.nls(mod) predict.nls(mod, se.fit = TRUE) predict.nls(mod, newdata = data.frame(AUC = c(0, 25, 50, 100, 200, 400, 600)), se.fit = TRUE) predict.nls(mod, newdata = data.frame(AUC = c(0, 25, 50, 100, 200, 400, 600)), se.fit = TRUE, interval = "confidence", level = 0.95) predict(mod, newdata = data.frame(AUC = c(0, 25, 50, 100, 200, 400, 600)), se.fit = TRUE, interval = "confidence", level = 0.95)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.