Mean signed deviation
Mean signed deviation (also known as mean signed difference, or mean signed
error) computes the average differences between truth
and estimate
. A
related metric is the mean absolute error (mae()
).
msd(data, ...) ## S3 method for class 'data.frame' msd(data, truth, estimate, na_rm = TRUE, ...) msd_vec(truth, estimate, na_rm = TRUE, ...)
data |
A |
... |
Not currently used. |
truth |
The column identifier for the true results
(that is |
estimate |
The column identifier for the predicted
results (that is also |
na_rm |
A |
Mean signed deviation is rarely used, since positive and negative errors
cancel each other out. For example, msd_vec(c(100, -100), c(0, 0))
would
return a seemingly "perfect" value of 0
, even though estimate
is wildly
different from truth
. mae()
attempts to remedy this by taking the
absolute value of the differences before computing the mean.
This metric is computed as mean(truth - estimate)
, following the convention
that an "error" is computed as observed - predicted
. If you expected this
metric to be computed as mean(estimate - truth)
, reverse the sign of the
result.
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For msd_vec()
, a single numeric
value (or NA
).
Thomas Bierhance
Other accuracy metrics:
ccc()
,
huber_loss_pseudo()
,
huber_loss()
,
iic()
,
mae()
,
mape()
,
mase()
,
mpe()
,
rmse()
,
smape()
# Supply truth and predictions as bare column names msd(solubility_test, solubility, prediction) library(dplyr) set.seed(1234) size <- 100 times <- 10 # create 10 resamples solubility_resampled <- bind_rows( replicate( n = times, expr = sample_n(solubility_test, size, replace = TRUE), simplify = FALSE ), .id = "resample" ) # Compute the metric by group metric_results <- solubility_resampled %>% group_by(resample) %>% msd(solubility, prediction) metric_results # Resampled mean estimate metric_results %>% summarise(avg_estimate = mean(.estimate))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.