Plot CIs from yhat
This function plots CIs that have been produced from /codebooteval.yhat.
plotCI.yhat(sampStat, upperCI, lowerCI, pid=1:ncol(sampStat), nr=2, nc=2)
sampStat |
Set of sample statistics |
upperCI |
Set of upper CIs |
lowerCI |
Set of lower CIs |
pid |
Which set of Metrics to plot (default to all) |
nr |
Number of rows (default = 2) |
nc |
Number of columns(default = 2) |
This function plots CIs that have been produced from /codebooteval.yhat.
This returns a plot of CIs that have been produced from /codebooteval.yhat.
Kim Nimon <kim.nimon@gmail.com>
Nimon, K., & Oswald, F. L. (2013). Understanding the results of multiple linear regression: Beyond standardized regression coefficients. Organizational Research Methods, 16, 650-674.
## Bootstrap regression results predicting paragraph ## comprehension based on three verbal tests: general info, ## sentence comprehension, & word classification ## Use HS dataset in MBESS if (require("MBESS")){ data(HS) ## Regression lm.out<-lm(t6_paragraph_comprehension~ t5_general_information+t7_sentence+t8_word_classification,data=HS) ## Calculate regression metrics regrOut<-calc.yhat(lm.out) ## Bootstrap results require ("boot") boot.out<-boot(HS,boot.yhat,100,lmOut=lm.out,regrout0=regrOut) ## Evaluate bootstrap results result<-booteval.yhat(regrOut,boot.out,bty="perc") ## Plot results ## plotCI.yhat(regrOut$PredictorMetrics[-nrow(regrOut$PredictorMetrics),], ## result$upperCIpm,result$lowerCIpm, pid=which(colnames(regrOut$PredictorMetrics) ## %in% c("Beta","rs","CD:0","CD:1","CD:2","GenDom","Pratt","RLW") == TRUE),nr=3,nc=3) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.